The presence of chaos is ubiquitous in mathematical models of neuroscience. In experimental neural systems, chaos was convincingly demonstrated in membranes, neurons, and small networks. However, its effects on the brain have long been debated. In this work, we use a three-dimensional map-based membrane potential model, the logistic KTz, to study chaos in single and coupled neurons. We first obtain an alternative phase diagram for the model using the interspike interval (ISI), evidencing a region of slow spikes (SS), missing from the original diagram of the KTz model. A large chaotic region is found inside the SS phase. Embedded in chaos are several self-similar periodic structures, such as shrimp-shaped domains and other structures. Sampling the behavior of neurons in this diagram, we detect a novel type of action potential, the neuronal early afterdepolarization (nEAD). EADs are pathological oscillations during the action potential, commonly found in cardiac cells and believed to be chaotic and responsible for generating arrhythmias in the heart. nEAD was found experimentally in neurons in a type of epilepsy. We study two chemically coupled neurons with this behavior. We identify and characterize transient chaos in their interaction. A phase diagram for this system presents a novel type of self-similar periodic structures, where the structures appear “chopped” in pieces.

1.
Z.
Qu
, “
Chaos in the genesis and maintenance of cardiac arrhythmias
,”
Prog. Biophys. Mol. Biol.
105
,
247
257
(
2011
).
2.
D. R.
Chialvo
,
R. F.
Gilmour Jr
, and
J.
Jalife
, “
Low dimensional chaos in cardiac tissue
,”
Nature
343
,
653
657
(
1990
).
3.
A.
Garfinkel
,
M. L.
Spano
,
W. L.
Ditto
, and
J. N.
Weiss
, “
Controlling cardiac chaos
,”
Science
257
,
1230
1235
(
1992
).
4.
Z.
Qu
,
J. N.
Weiss
, and
A.
Garfinkel
, “
From local to global spatiotemporal chaos in a cardiac tissue model
,”
Phys. Rev. E
61
,
727
732
(
2000
).
5.
S.
Alonso
,
M.
Bär
, and
B.
Echebarria
, “
Nonlinear physics of electrical wave propagation in the heart: A review
,”
Rep. Prog. Phys.
79
,
96601
(
2016
).
6.
D.
Sato
,
L.-H. H.
Xie
,
A. A.
Sovari
,
D. X.
Tran
,
N.
Morita
,
F.
Xie
,
H.
Karagueuzian
,
A.
Garfinkel
,
J. N.
Weiss
, and
Z.
Qu
, “
Synchronization of chaotic early afterdepolarizations in the genesis of cardiac arrhythmias
,”
Proc. Natl. Acad. Sci.
106
,
2983
2988
(
2009
).
7.
R. V.
Stenzinger
and
M. H. R.
Tragtenberg
, “
Cardiac reentry modeled by spatiotemporal chaos in a coupled map lattice
,”
Eur. Phys. J. Spec. Top.
231
,
847
858
(
2022
).
8.
H.
Korn
and
P.
Faure
, “
Is there chaos in the brain? II. Experimental evidence and related models
,”
C. R. Biol.
326
,
787
840
(
2003
).
9.
K.
Aihara
,
G.
Matsumoto
, and
Y.
Ikegaya
, “
Periodic and non-periodic responses of a periodically forced Hodgkin-Huxley oscillator
,”
J. Theor. Biol.
109
,
249
269
(
1984
).
10.
H.
Hayashi
and
S.
Ishizuka
, “
Chaotic nature of bursting discharges in the Onchidium pacemaker neuron
,”
J. Theor. Biol.
156
,
269
291
(
1992
).
11.
G. J.
Mpitsos
,
R. M.
Burton
,
H.
Clayton Creech
, and
S. O.
Soinila
, “
Evidence for chaos in spike trains of neurons that generate rhythmic motor patterns
,”
Brain Res. Bull.
21
,
529
538
(
1988
).
12.
H. D.
Abarbanel
,
R.
Huerta
,
M. I.
Rabinovich
,
N. F.
Rulkov
,
P. F.
Rowat
, and
A. I.
Selverston
, “
Synchronized action of synaptically coupled chaotic model neurons
,”
Neural Comput.
8
,
1567
1602
(
1996
).
13.
V.
Makarenko
and
R.
Llinás
, “
Experimentally determined chaotic phase synchronization in a neuronal system
,”
Proc. Natl. Acad. Sci.
95
,
15747
15752
(
1998
).
14.
A.
Babloyantz
and
A.
Destexhe
, “
Low-dimensional chaos in an instance of epilepsy
,”
Proc. Natl. Acad. Sci.
83
,
3513
3517
(
1986
).
15.
H.
Hayashi
and
S.
Ishizuka
, “
Chaotic responses of the hippocampal CA3 region to a mossy fiber stimulation in vitro
,”
Brain Res.
686
,
194
206
(
1995
).
16.
L. D.
Iasemidis
and
J. C.
Sackellares
, “
Chaos theory and epilepsy
,”
Neuroscientist
2
,
118
126
(
1996
).
17.
S. J.
Schiff
,
K.
Jerger
,
D. H.
Duong
,
T.
Chang
,
M. L.
Spano
, and
W. L.
Ditto
, “
Controlling chaos in the brain
,”
Nature
370
,
615
620
(
1994
).
18.
S. J.
Schiff
,
K.
Jerger
,
T.
Chang
,
T.
Sauer
, and
P. G.
Aitken
, “
Stochastic versus deterministic variability in simple neuronal circuits: II. Hippocampal slice
,”
Biophys. J.
67
,
684
691
(
1994
).
19.
J.
Theiler
, “
On the evidence for low-dimensional chaos in an epileptic electroencephalogram
,”
Phys. Lett. A
196
,
335
341
(
1995
).
20.
D. J.
Christini
and
J. J.
Collins
, “
Controlling nonchaotic neuronal noise using chaos control techniques
,”
Phys. Rev. Lett.
75
,
2782
2785
(
1995
).
21.
Y.-C.
Lai
,
M. A. F.
Harrison
,
M. G.
Frei
, and
I.
Osorio
, “
Inability of Lyapunov exponents to predict epileptic seizures
,”
Phys. Rev. Lett.
91
,
068102
(
2003
).
22.
X.
Huang
,
W.
Xu
,
J.
Liang
,
K.
Takagaki
,
X.
Gao
,
J.
young Wu
, and
J.
young Wu
, “
Spiral wave dynamics in neocortex
,”
Neuron
68
,
978
990
(
2010
).
23.
J.
Viventi
,
D.-H.
Kim
,
L.
Vigeland
,
E. S.
Frechette
,
J. A.
Blanco
,
Y.-S.
Kim
,
A. E.
Avrin
,
V. R.
Tiruvadi
,
S.-W.
Hwang
,
A. C.
Vanleer
,
D. F.
Wulsin
,
K.
Davis
,
C. E.
Gelber
,
L.
Palmer
,
J. V. D.
Spiegel
,
J.
Wu
,
J.
Xiao
,
Y.
Huang
,
D.
Contreras
,
J. A.
Rogers
, and
B.
Litt
, “
Flexible, foldable, actively multiplexed, high-density electrode array for mapping brain activity in vivo
,”
Nat. Neurosci.
14
,
1599
1605
(
2011
).
24.
X.
Liu
,
Y.
Lu
, and
D.
Kuzum
, “
High-density porous graphene arrays enable detection and analysis of propagating cortical waves and spirals
,”
Sci. Rep.
8
,
1
10
(
2018
).
25.
L. F.
Lopez-Santiago
,
Y.
Yuan
,
J. L.
Wagnon
,
J. M.
Hull
,
C. R.
Frasier
, and
H. A. O.
Malley
, “
Neuronal hyperexcitability in a mouse model of SCN8A epileptic encephalopathy
,”
Proc. Natl. Acad. Sci.
114
,
2383
2388
(
2017
).
26.
B. P.
Bean
, “
The action potential in mammalian central neurons
,”
Nat. Rev. Neurosci.
8
,
451
465
(
2007
).
27.
C. R.
Frasier
,
J. L.
Wagnon
,
Y. O.
Bao
,
L. G.
McVeigh
,
L. F.
Lopez-Santiago
,
M. H.
Meisler
, and
L. L.
Isom
, “
Cardiac arrhythmia in a mouse model of sodium channel SCN8A epileptic encephalopathy
,”
Proc. Natl. Acad. Sci.
113
,
12838
12843
(
2016
).
28.
O.
Kinouchi
and
M. H. R.
Tragtenberg
, “
Modeling neurons by simple maps
,”
Int. J. Bifurcation Chaos
6
,
2343
2360
(
1996
).
29.
S. M.
Kuva
,
G. F.
Lima
,
O.
Kinouchi
,
M. H. R.
Tragtenberg
, and
A. C.
Roque
, “
A minimal model for excitable and bursting elements
,”
Neurocomputing
38–40
,
255
261
(
2001
).
30.
M.
Girardi-Schappo
,
G. S.
Bortolotto
,
R. V.
Stenzinger
,
J. J.
Gonsalves
, and
M. H. R.
Tragtenberg
, “
Phase diagrams and dynamics of a computationally efficient map-based neuron model
,”
PLoS One
12
,
e0174621
(
2017
).
31.
R. V.
Stenzinger
,
T. E.
Scalvin
,
P. A.
Morelo
, and
M. H. R.
Tragtenberg
, “
Cardiac behaviors and chaotic arrhythmias in the Hindmarsh–Rose model
,”
Chaos, Solitons Fractals
175
,
113983
(
2023
).
32.
H.
Kubista
,
S.
Boehm
, and
M.
Hotka
, “
The paroxysmal depolarization shift: Reconsidering its role in epilepsy, epileptogenesis and beyond
,”
Int. J. Mol. Sci.
20
,
577
(
2019
).
33.
J. A. C.
Gallas
, “
Structure of the parameter space of the Hénon map
,”
Phys. Rev. Lett.
70
,
2714
2717
(
1993
).
34.
A.
Endler
and
J. A.
Gallas
, “
Mandelbrot-like sets in dynamical systems with no critical points
,”
C. R. Math.
342
,
681
684
(
2006
).
35.
A.
Celestino
,
C.
Manchein
,
H.
Albuquerque
, and
M.
Beims
, “
Stable structures in parameter space and optimal ratchet transport
,”
Commun. Nonlinear Sci. Numer. Simul.
19
,
139
149
(
2014
).
36.
L. F. B.
Caixeta
,
M. H. P.
Gonçalves
,
M. H. R.
Tragtenberg
, and
M.
Girardi-Schappo
, “Devil’s staircase inside shrimps reveals periodicity of plateau spikes and bursts,” arXiv:2411.16373 (2024).
37.
T. S.
Nelson
,
C. L.
Suhr
,
A.
Lai
,
A. J.
Halliday
,
D. R.
Freestone
,
K. J.
McLean
,
A. N.
Burkitt
, and
M. J.
Cook
, “
Seizure severity and duration in the cortical stimulation model of experimental epilepsy in rats: A longitudinal study
,”
Epilepsy Res.
89
,
261
270
(
2010
).
38.
S.
Kovac
,
P.
Kahane
, and
B.
Diehl
, “
Seizures induced by direct electrical cortical stimulation – Mechanisms and clinical considerations
,”
Clin. Neurophysiol.
127
,
31
39
(
2016
).
39.
V. R.
Cota
,
J. C.
de Oliveira
,
L. C. M.
Damázio
, and
M. F. D.
Moraes
, “
Nonperiodic stimulation for the treatment of refractory epilepsy: Applications, mechanisms, and novel insights
,”
Epilepsy Behav.
121
,
106609
(
2021
).
40.
Y.-C.
Lai
and
T.
Tél
, “Transient chaos,” in Applied Mathematical Sciences (Springer New York, New York, NY, 2011), Vol. 173.
41.
M. P.
Dafilis
,
D. T.
Liley
, and
P. J.
Cadusch
, “
Robust chaos in a model of the electroencephalogram: Implications for brain dynamics
,”
Chaos
11
,
474
478
(
2001
).
42.
L.
Santana
,
R. M.
da Silva
,
H. A.
Albuquerque
, and
C.
Manchein
, “
Transient dynamics and multistability in two electrically interacting FitzHugh–Nagumo neurons
,”
Chaos
31
,
053107
(
2021
).
43.
C.
Manchein
,
L.
Santana
,
R. M.
da Silva
, and
M. W.
Beims
, “
Noise-induced stabilization of the FitzHugh–Nagumo neuron dynamics: Multistability and transient chaos
,”
Chaos
32
,
083102
(
2022
).
44.
A.
Roth
and
M. C. W.
van Rossum
, “Modeling synapses,” in Comput. Model. Methods Neurosci., edited by E. De Schutter (The MIT Press, 2009), pp. 139–160.
45.
M.
Copelli
,
M. H. R.
Tragtenberg
, and
O.
Kinouchi
, “
Stability diagrams for bursting neurons modeled by three-variable maps
,”
Phys. A Stat. Mech. Appl.
342
,
263
269
(
2004
).
46.
A.
Dhooge
,
W.
Govaerts
,
Y. A.
Kuznetsov
,
H. G.
Meijer
, and
B.
Sautois
, “
New features of the software MatCont for bifurcation analysis of dynamical systems
,”
Math. Comput. Model. Dyn. Syst.
14
,
147
175
(
2008
).
47.
J.
Eckmann
and
D.
Ruelle
, “
Ergodic theory of chaos and strange attractors
,”
Rev. Mod. Phys.
57
,
617
656
(
1985
).
48.
J. G.
Freire
,
R. J.
Field
, and
J. A.
Gallas
, “
Relative abundance and structure of chaotic behavior: The nonpolynomial Belousov-Zhabotinsky reaction kinetics
,”
J. Chem. Phys.
131
,
044105
(
2009
).
49.
J. A.
Gallas
, “
The structure of infinite periodic and chaotic hub cascades in phase diagrams of simple autonomous flows
,”
Int. J. Bifurcation Chaos
20
,
197
211
(
2010
).
50.
R.
Stoop
,
P.
Benner
, and
Y.
Uwate
, “
Real-world existence and origins of the spiral organization of shrimp-shaped domains
,”
Phys. Rev. Lett.
105
,
074102
(
2010
).
51.
M.
Hossain
,
S.
Garai
,
S.
Jafari
, and
N.
Pal
, “
Bifurcation, chaos, multistability, and organized structures in a predator–prey model with vigilance
,”
Chaos
32
,
063139
(
2022
).
52.
C. C.
Felicio
and
P. C.
Rech
, “
Arnold tongues and the Devil’s Staircase in a discrete-time Hindmarsh–Rose neuron model
,”
Phys. Lett. A
379
,
2845
2847
(
2015
).
53.
F.
Wang
and
H.
Cao
, “
Mode locking and quasiperiodicity in a discrete-time Chialvo neuron model
,”
Commun. Nonlinear Sci. Numer. Simul.
56
,
481
489
(
2018
).
54.
N.
Stankevich
,
A.
Gonchenko
,
E.
Popova
, and
S.
Gonchenko
, “
Complex dynamics of the simplest neuron model: Singular chaotic Shilnikov attractor as specific oscillatory neuron activity
,”
Chaos, Solitons Fractals
172
,
113565
(
2023
).
55.
L.
Gaztañaga
,
F. E.
Marchlinski
, and
B. P.
Betensky
, “
Mechanisms of cardiac arrhythmias
,”
Rev. Esp. Cardiol. Engl. Ed.
65
,
174
185
(
2012
).
56.
T. S.
Nelson
,
C. L.
Suhr
,
D. R.
Freestone
,
A.
Lai
,
A. J.
Halliday
,
K. J.
McLean
,
A. N.
Burkitt
, and
M. J.
Cook
, “
Closed-loop seizure control with very high frequency electrical stimulation at seizure onset in the GAERS model of absence epilepsy
,”
Int. J. Neural Syst.
21
,
163
73
(
2011
).
57.
M.
Le Bon-Jego
and
R.
Yuste
, “
Persistently active, pacemaker-like neurons in neocortex
,”
Front. Neurosci.
1
,
123
129
(
2007
).
58.
M. S.
Baptista
and
I. L.
Caldas
, “
Dynamics of the kicked logistic map
,”
Chaos, Solitons Fractals
7
,
325
336
(
1996
).
59.
M. S.
Baptista
and
I. L.
Caldas
, “
The parameter space structure of the kicked logistic map and its stability
,”
Int. J. Bifurcation Chaos
07
,
447
457
(
1997
).
You do not currently have access to this content.