This study focuses on the analysis of a unique composition between two well-established models, known as the Logistic–Gauss map. The investigation cohesively transitions to an exploration of parameter space, essential for unraveling the complexity of dissipative mappings and understanding the intricate relationships between periodic structures and chaotic regions. By manipulating control parameters, our approach reveals intriguing patterns, with findings enriched by extreme orbits, trajectories that connect local maximum and minimum values of one-dimensional maps. This theory enhances our perception of structural organization and offers valuable perceptions of the system behaviors, contributing to an expanded understanding of chaos and periodicity in dynamic systems. The analysis reveals Complex Sets of Periodicity (CSP) in the parameter space, characterized by superstable curves that traverse their main bodies. The exploration of different combinations of parameters shows cascades of CSP structures with added periods and are organized based on extreme curves. This investigation offers valuable discoveries of the dynamics of dissipative mappings, opening avenues for future explorations in chaotic systems.

1.
M.
Kesmia
,
S.
Boughaba
, and
S.
Jacquir
, “
Nonlinear dynamics of two-dimensional cardiac action potential duration mapping model with memory
,”
J. Math. Biol.
78
,
1529
1552
(
2019
).
2.
S.
Tanabe
and
N.
Masuda
, “
Complex dynamics of a nonlinear voter model with contrarian agents
,”
Chaos
23
,
043136
(
2013
).
3.
A. S.
Reis
,
K. C.
Iarosz
,
F. A.
Ferrari
,
I. L.
Caldas
,
A. M.
Batista
, and
R. L.
Viana
, “
Bursting synchronization in neuronal assemblies of scale-free networks
,”
Chaos Solitons Fractals
142
,
110395
(
2021
).
4.
R.
May
, “
Simple mathematical models with very complicated dynamics
,”
Nature
261
,
459
467
(
1976
).
5.
D. R.
da Costa
,
M.
Hansen
,
E. D.
Leonel
, and
R. O.
Medrano-T
, “
Extreming curves and the parameter space of a generalized logistic mapping
,”
J. Vib. Testing Syst. Dyn.
2
(2),
109
118
(
2018
).
6.
Z.
Zhou
,
W.
Shi
,
Y.
Bao
, and
M.
Yang
, “A Gaussian function based chaotic neural network,” in 2010 International Conference on Computer Application and System Modeling (ICCASM 2010) (IEEE, 2010), Vol. 4, pp. V4–203.
7.
J. A.
de Oliveira
,
H. M.
de Mendonça
,
A. A.
da Silva
, and
E. D.
Leonel
, “
Critical slowing down at a fold and a period doubling bifurcations for a Gauss map
,”
Braz. J. Phys.
49
,
923
927
(
2019
).
8.
D. R.
da Costa
,
J. G.
Rocha
,
L. S.
de Paiva
, and
R. O.
Medrano-T
, “
Logistic-like and Gauss coupled maps: The born of period-adding cascades
,”
Chaos Solitons Fractals
144
,
110688
(
2021
).
9.
D. R.
Da Costa
,
M.
Hansen
,
G.
Guarise
,
R. O.
Medrano-T
, and
E. D.
Leonel
, “
The role of extreme orbits in the global organization of periodic regions in parameter space for one dimensional maps
,”
Phys. Lett. A
380
,
1610
1614
(
2016
).
10.
C. E. P.
Abreu
,
J. D. V.
Hermes
,
D. R.
da Costa
,
E. S.
Medeiros
, and
R. O.
Medrano-T
, “
Extreme fractal dimension at periodicity cascades in parameter spaces
,”
Phys. Rev. E
110
,
L032201
(
2024
).
11.
S.
Fraser
and
R.
Kapral
, “
Analysis of flow hysteresis by a one-dimensional map
,”
Phys. Rev. A
25
,
3223
(
1982
).
12.
R.
Vitolo
,
P.
Glendinning
, and
J. A. C.
Gallas
, “
Global structure of periodicity hubs in Lyapunov phase diagrams of dissipative flows
,”
Phys. Rev. E
84
,
016216
(
2011
).
13.
E.
Lorenz
, “
Compound windows of the Hénon map
,”
Physica D
237
,
1689
(
2008
).
14.
C.
Mira
,
Chaotic Dynamics
(
World Scientific
,
Singapore
,
1987
).
15.
S. V.
Gonchenko
,
C.
Simó
, and
A.
Vieiro
, “
Richness of dynamics and global bifurcations in systems with a homoclinic figure-eight
,”
Nonlinearity
26
,
621
(
2013
).
16.
J. A.
De Oliveira
,
L. T.
Montero
,
D. R.
Da Costa
,
J.
Méndez-Bermúdez
,
R. O.
Medrano-T
, and
E. D.
Leonel
, “
An investigation of the parameter space for a family of dissipative mappings
,”
Chaos
29
,
053114
(
2019
).
17.
D. M.
Maranhão
and
R. O.
Medrano-T
, “
Periodicity in the asymmetrical quartic map
,”
Chaos Solitons Fractals
186
,
115204
(
2024
).
18.
C. A. T.
Chávez
and
S.
Curilef
, “
Tricorn-like structures in an optically injected semiconductor laser
,”
Chaos
30
,
023130
(
2020
).
19.
R. O.
Medrano-T
and
R.
Rocha
, “
The negative side of Chua’s circuit parameter space: Stability analysis, period-adding, basin of attraction metamorphoses, and experimental investigation
,”
Int. J. Bifurcat. Chaos
24
,
1430025
(
2014
).
20.
M. J.
Feigenbaum
, “
Universal behavior in nonlinear systems
,”
Phys. D
7
,
16
39
(
1983
).
You do not currently have access to this content.