Stock trend prediction is a significant challenge due to the inherent uncertainty and complexity of stock market time series. In this study, we introduce an innovative dual-branch network model designed to effectively address this challenge. The first branch constructs recurrence plots (RPs) to capture the nonlinear relationships between time points from historical closing price sequences and computes the corresponding recurrence quantifification analysis measures. The second branch integrates transposed transformers to identify subtle interconnections within the multivariate time series derived from stocks. Features extracted from both branches are concatenated and fed into a fully connected layer for binary classification, determining whether the stock price will rise or fall the next day. Our experimental results based on historical data from seven randomly selected stocks demonstrate that our proposed dual-branch model achieves superior accuracy (ACC) and F1-score compared to traditional machine learning and deep learning approaches. These findings underscore the efficacy of combining RPs with deep learning models to enhance stock trend prediction, offering considerable potential for refining decision-making in financial markets and investment strategies.

1.
E. F.
Fama
, “
Efficient capital markets
,”
J. Finance
25
,
383
417
(
1970
).
2.
J.
Patel
,
S.
Shah
,
P.
Thakkar
, and
K.
Kotecha
, “
Predicting stock and stock price index movement using trend deterministic data preparation and machine learning techniques
,”
Expert Syst. Appl.
42
,
259
268
(
2015
).
3.
Z.
Hu
,
W.
Liu
,
J.
Bian
,
X.
Liu
, and
T.-Y.
Liu
, “Listening to chaotic whispers: A deep learning framework for news-oriented stock trend prediction,” in Proceedings of the Eleventh ACM International Conference on Web Search and Data Mining (Association for Computing Machinery, 2018), pp. 261–269.
4.
M.-C.
Lee
, “
Using support vector machine with a hybrid feature selection method to the stock trend prediction
,”
Expert Syst. Appl.
36
,
10896
10904
(
2009
).
5.
J.-H.
Wang
and
J.-Y.
Leu
, “Stock market trend prediction using ARIMA-based neural networks,” in Proceedings of International Conference on Neural Networks (ICNN’96), Vol. 4 (IEEE, 1996), pp. 2160–2165.
6.
N.
Merh
,
V.
Saxena
, and
K. R.
Pardasani
, “
Next day stock market forecasting: An application of ANN and ARIMA
,”
IUP J. Appl. Finance
17
,
70
(
2011
).
7.
N.
Li
,
J.
Yang
, and
X.
Liang
, “Mining associations between trading volume volatilities and financial information volumes based on GARCH model and neural networks,” in The First International Conference on Management Innovation, Vol. 1 (Citeseer, 2007), pp. 388–396.
8.
C.-C.
Lu
and
C.-H.
Wu
, “Support vector machine combined with GARCH models for call option price prediction,” in 2009 International Conference on Artificial Intelligence and Computational Intelligence, Vol. 1 (IEEE, 2009), pp. 35–40.
9.
C. N.
Babu
and
B. E.
Reddy
, “Selected indian stock predictions using a hybrid ARIMA-GARCH model,” in 2014 International Conference on Advances in Electronics Computers and Communications (IEEE, 2014), pp. 1–6.
10.
S.
Basak
,
S.
Kar
,
S.
Saha
,
L.
Khaidem
, and
S. R.
Dey
, “
Predicting the direction of stock market prices using tree-based classifiers
,”
North Am. J. Econ. Finance
47
,
552
567
(
2019
).
11.
A.
Dezhkam
and
M. T.
Manzuri
, “
Forecasting stock market for an efficient portfolio by combining XGBoost and Hilbert–Huang transform
,”
Eng. Appl. Artif. Intell.
118
,
105626
(
2023
).
12.
Z.
Wang
,
Z.
Hu
,
F.
Li
,
S.-B.
Ho
, and
E.
Cambria
, “
Learning-based stock trending prediction by incorporating technical indicators and social media sentiment
,”
Cogn. Comput.
15
,
1092
1102
(
2023
).
13.
L. A.
Teixeira
and
A. L. I.
De Oliveira
, “
A method for automatic stock trading combining technical analysis and nearest neighbor classification
,”
Expert Syst. Appl.
37
,
6885
6890
(
2010
).
14.
X.
Yuan
,
J.
Yuan
,
T.
Jiang
, and
Q. U.
Ain
, “
Integrated long-term stock selection models based on feature selection and machine learning algorithms for China stock market
,”
IEEE Access
8
,
22672
22685
(
2020
).
15.
Q.
Ding
,
S.
Wu
,
H.
Sun
,
J.
Guo
, and
J.
Guo
, “Hierarchical multi-scale Gaussian transformer for stock movement prediction,” in IJCAI (Morgan Kaufmann, 2020), pp. 4640–4646.
16.
D.
Chen
,
Y.
Zou
,
K.
Harimoto
,
R.
Bao
,
X.
Ren
, and
X.
Sun
, ’‘Incorporating fine-grained events in stock movement prediction,” arXiv:1910.05078 (2019).
17.
Q.
Zhang
,
Y.
Zhang
,
F.
Bao
,
Y.
Liu
,
C.
Zhang
, and
P.
Liu
, “
Incorporating stock prices and text for stock movement prediction based on information fusion
,”
Eng. Appl. Artif. Intell.
127
,
107377
(
2024
).
18.
Z.
Yu
,
L.
Qin
,
Y.
Chen
, and
M. D.
Parmar
, “
Stock price forecasting based on LLE-BP neural network model
,”
Phys. A
553
,
124197
(
2020
).
19.
Y.
Zhao
and
G.
Yang
, “
Deep learning-based integrated framework for stock price movement prediction
,”
Appl. Soft Comput.
133
,
109921
(
2023
).
20.
D. M.
Nelson
,
A. C.
Pereira
, and
R. A.
De Oliveira
, “Stock market’s price movement prediction with LSTM neural networks,” in 2017 International Joint Conference on Neural Networks (IJCNN) (IEEE, 2017), pp. 1419–1426.
21.
M.
Jiang
,
J.
Liu
,
L.
Zhang
, and
C.
Liu
, “
An improved stacking framework for stock index prediction by leveraging tree-based ensemble models and deep learning algorithms
,”
Phys. A
541
,
122272
(
2020
).
22.
J.
Zhao
,
D.
Zeng
,
S.
Liang
,
H.
Kang
, and
Q.
Liu
, “
Prediction model for stock price trend based on recurrent neural network
,”
J. Ambient Intell. Humanized Comput.
12
,
745
753
(
2021
).
23.
H.
Zhou
,
S.
Zhang
,
J.
Peng
,
S.
Zhang
,
J.
Li
,
H.
Xiong
, and
W.
Zhang
, “Informer: Beyond efficient transformer for long sequence time-series forecasting,” in Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 35 (AAAI, 2021), pp. 11106–11115.
24.
T.
Zhou
,
Z.
Ma
,
Q.
Wen
,
X.
Wang
,
L.
Sun
, and
R.
Jin
, “Fedformer: Frequency enhanced decomposed transformer for long-term series forecasting,” in International Conference on Machine Learning (PMLR, 2022), pp. 27268–27286.
25.
Y.
Nie
,
N. H.
Nguyen
,
P.
Sinthong
, and
J.
Kalagnanam
, “A time series is worth 64 words: Long-term forecasting with transformers,” arXiv:2211.14730 (2022).
26.
A.
Zeng
,
M.
Chen
,
L.
Zhang
, and
Q.
Xu
, “Are transformers effective for time series forecasting?” in Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 37 (AAAI, 2023), pp. 11121–11128.
27.
J.-P.
Eckmann
,
S.
Kamphorst
, and
D.
Ruelle
, “
Recurrence plots of dynamical systems
,”
Europhys. Lett.
4
,
973
977
(
1987
).
28.
J. P.
Zbilut
and
C. L.
Webber Jr
, “
Embeddings and delays as derived from quantification of recurrence plots
,”
Phys. Lett. A
171
,
199
203
(
1992
).
29.
N.
Marwan
,
M. C.
Romano
,
M.
Thiel
, and
J.
Kurths
, “
Recurrence plots for the analysis of complex systems
,”
Phys. Rep.
438
,
237
329
(
2007
).
30.
J.
Lu
and
K.-Y.
Tong
, “
Robust single accelerometer-based activity recognition using modified recurrence plot
,”
IEEE Sens. J.
19
,
6317
6324
(
2019
).
31.
Y.
Hirata
, “
Recurrence plots for characterizing random dynamical systems
,”
Commun. Nonlinear Sci. Numer. Simul.
94
,
105552
(
2021
).
32.
Z.
Zhao
,
Y.
Zhang
,
Z.
Comert
, and
Y.
Deng
, “
Computer-aided diagnosis system of fetal hypoxia incorporating recurrence plot with convolutional neural network
,”
Front. Physiol.
10
,
255
(
2019
).
33.
H.
Zhang
,
C.
Liu
,
F.
Tang
,
M.
Li
,
D.
Zhang
,
L.
Xia
,
S.
Crozier
,
H.
Gan
,
N.
Zhao
,
W.
Xu
et al., “
Atrial fibrillation classification based on the 2D representation of minimal subset ECG and a non-deep neural network
,”
Front. Physiol.
14
,
1070621
(
2023
).
34.
C.
Hao
,
R.
Wang
,
M.
Li
,
C.
Ma
,
Q.
Cai
, and
Z.
Gao
, “
Convolutional neural network based on recurrence plot for EEG recognition
,”
Chaos
31
,
0
(
2021
).
35.
J. A.
Bastos
and
J.
Caiado
, “
Recurrence quantification analysis of global stock markets
,”
Phys. A
390
,
1315
1325
(
2011
).
36.
Y.
Yin
and
P.
Shang
, “
Multiscale recurrence plot and recurrence quantification analysis for financial time series
,”
Nonlinear. Dyn.
85
,
2309
2352
(
2016
).
37.
H.
Niu
and
J.
Wang
, “
Multifractal and recurrence behaviors of continuum percolation-based financial price dynamics
,”
Nonlinear Dyn.
83
,
513
528
(
2016
).
38.
Y.
Ma
,
R.
Mao
,
Q.
Lin
,
P.
Wu
, and
E.
Cambria
, “
Multi-source aggregated classification for stock price movement prediction
,”
Inf. Fusion
91
,
515
528
(
2023
).
39.
Q.
Li
,
J.
Tan
,
J.
Wang
, and
H.
Chen
, “
A multimodal event-driven LSTM model for stock prediction using online news
,”
IEEE Trans. Knowl. Data Eng.
33
,
3323
3337
(
2020
).
40.
J. P.
Zbilut
, “Use of recurrence quantification analysis in economic time series,” in Economics: Complex Windows (Springer, 2005), pp. 91–104.
41.
J. P.
Zbilut
,
J.-M.
Zaldivar-Comenges
, and
F.
Strozzi
, “
Recurrence quantification based Liapunov exponents for monitoring divergence in experimental data
,”
Phys. Lett. A
297
,
173
181
(
2002
).
42.
T.
Rawald
,
M.
Sips
, and
N.
Marwan
, “
Pyrqa—Conducting recurrence quantification analysis on very long time series efficiently
,”
Comput. Geosci.
104
,
101
108
(
2017
).
43.
T.
Rawald
,
M.
Sips
,
N.
Marwan
, and
D.
Dransch
, “Fast computation of recurrences in long time series,” in Translational Recurrences: From Mathematical Theory to Real-World Applications (Springer, 2014), pp. 17–29.
44.
G. E.
Box
,
G. M.
Jenkins
,
G. C.
Reinsel
, and
G. M.
Ljung
,
Time Series Analysis: Forecasting and Control
(
John Wiley & Sons
,
2015
).
45.
L.
Breiman
, “
Random forests
,”
Mach. Learn.
45
,
5
32
(
2001
).
46.
T.
Chen
and
C.
Guestrin
, “XGBoost: A scalable tree boosting system,” in Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (Association for Computing Machinery, 2016), pp. 785–794.
47.
S.
Hochreiter
and
J.
Schmidhuber
, “
Long short-term memory
,”
Neural Comput.
9
,
1735
1780
(
1997
).
48.
Y.
Liu
,
H.
Wu
,
J.
Wang
, and
M.
Long
, “
Non-stationary transformers: Exploring the stationarity in time series forecasting
,”
Adv. Neural Inform. Process. Syst.
35
,
9881
9893
(
2022
).
You do not currently have access to this content.