We demonstrate that fundamental nonlinear localized modes can exist in the Chen–Lee–Liu equation modified by several parity-time ( P T) symmetric complex potentials. The explicit formula of analytical solitons is derived from the physically interesting Scarf-II potential, and families of spatial solitons in internal modes are numerically captured under the optical lattice potential. By the spectral analysis of linear stability, we observe that these bright solitons can remain stable across a broad scope of potential parameters, despite the breaking of the corresponding linear P T-symmetric phases. When these bright spatial solitons interact with external incident waves, they can always maintain their original shape, while the external incident wave may remain unchanged or may generate a reflected wave after the interaction. Then, the adiabatic switching of potential parameters is carried out in a way that allows these bright solitons to be excited from one unstable bound state to another alternative stable bound state. Many other intriguing properties associated with these nonlinear localized modes including the lateral power flow are further analyzed meticulously. Various high-order rogue waves induced by modulation instability in these P T-symmetric systems are generated too. These results may be useful to construct novel optical soliton communication schemes or design related optical materials.

1
C. M.
Bender
and
S.
Boettcher
, “
Real spectra in non-Hermitian Hamiltonians having PT symmetry
,”
Phys. Rev. Lett.
80
,
5243
(
1998
).
2
C. M.
Bender
,
D. C.
Brody
, and
H. F.
Jones
, “
Must a Hamiltonian be Hermitian?
Am. J. Phys.
71
,
1095
1102
(
2003
).
3
C. M.
Bender
, “
Making sense of non-Hermitian Hamiltonians
,”
Rep. Prog. Phys.
70
,
947
(
2007
).
4
Z.
Ahmed
, “
Real and complex discrete eigenvalues in an exactly solvable one-dimensional complex PT-invariant potential
,”
Phys. Lett. A
282
,
343
348
(
2001
).
5
E. A.
Ultanir
,
G. I.
Stegeman
, and
D. N.
Christodoulides
, “
Dissipative photonic lattice solitons
,”
Opt. Lett.
29
,
845
847
(
2004
).
6
Z.
Musslimani
,
K. G.
Makris
,
R.
El-Ganainy
, and
D. N.
Christodoulides
, “
Optical solitons in PT periodic potentials
,”
Phys. Rev. Lett.
100
,
030402
(
2008
).
7
J.
Zhang
,
Z.
Feng
, and
X.
Sun
, “
Realization of bound states in the continuum in anti-PT-Symmetric optical systems: A proposal and analysis
,”
Laser Photonics Rev.
17
,
2200079
(
2023
).
8
A.
Guo
,
G.
Salamo
,
D.
Duchesne
,
R.
Morandotti
,
M.
Volatier-Ravat
,
V.
Aimez
,
G.
Siviloglou
, and
D.
Christodoulides
, “
Observation of PT-symmetry breaking in complex optical potentials
,”
Phys. Rev. Lett.
103
,
093902
(
2009
).
9
C. E.
Rüter
,
K. G.
Makris
,
R.
El-Ganainy
,
D. N.
Christodoulides
,
M.
Segev
, and
D.
Kip
, “
Observation of parity–time symmetry in optics
,”
Nat. Phys.
6
,
192
195
(
2010
).
10
A.
Regensburger
,
C.
Bersch
,
M.-A.
Miri
,
G.
Onishchukov
,
D. N.
Christodoulides
, and
U.
Peschel
, “
Parity-time synthetic photonic lattices
,”
Nature
488
,
167
171
(
2012
).
11
G.
Castaldi
,
S.
Savoia
,
V.
Galdi
,
A.
Alù
, and
N.
Engheta
, “
PT metamaterials via complex-coordinate transformation optics
,”
Phys. Rev. Lett.
110
,
173901
(
2013
).
12
A.
Regensburger
,
M.-A.
Miri
,
C.
Bersch
,
J.
Näger
,
G.
Onishchukov
,
D. N.
Christodoulides
, and
U.
Peschel
, “
Observation of defect states in PT-symmetric optical lattices
,”
Phys. Rev. Lett.
110
,
223902
(
2013
).
13
B.
Peng
,
Ş. K.
Özdemir
,
F.
Lei
,
F.
Monifi
,
M.
Gianfreda
,
G. L.
Long
,
S.
Fan
,
F.
Nori
,
C. M.
Bender
, and
L.
Yang
, “
Parity-time-symmetric whispering-gallery microcavities
,”
Nat. Phys.
10
,
394
398
(
2014
).
14
A. A.
Zyablovsky
,
A. P.
Vinogradov
,
A. A.
Pukhov
,
A. V.
Dorofeenko
, and
A. A.
Lisyansky
, “
PT-symmetry in optics
,”
Phys.-Usp.
57
,
1063
(
2014
).
15
H.
Xu
,
Z.
Qin
,
F.
Liu
,
D.
Zhong
,
H.
Ni
, and
F.
Liu
, “
Optical bistability of graphene in PT-symmetric Thue–Morse photonic crystals
,”
J. Mater. Sci.
57
,
6524
6535
(
2022
).
16
V. V.
Konotop
,
J.
Yang
, and
D. A.
Zezyulin
, “
Nonlinear waves in PT-symmetric systems
,”
Rev. Mod. Phys.
88
,
035002
(
2016
).
17
Y.
He
and
D.
Mihalache
, “
Spatial solitons in parity-time-symmetric mixed linear-nonlinear optical lattices: Recent theoretical results
,”
Rom. Rep. Phys.
64
,
1243
1258
(
2012
).
18
F.
Single
,
H.
Cartarius
,
G.
Wunner
, and
J.
Main
, “
Coupling approach for the realization of a PT-symmetric potential for a Bose-Einstein condensate in a double well
,”
Phys. Rev. A
90
,
042123
(
2014
).
19
F.
Zhang
,
Y.
Feng
,
X.
Chen
,
L.
Ge
, and
W.
Wan
, “
Synthetic anti-PT symmetry in a single microcavity
,”
Phys. Rev. Lett.
124
,
053901
(
2020
).
20
B.
Dóra
,
D.
Sticlet
, and
C. P.
Moca
, “
Correlations at PT-symmetric quantum critical point
,”
Phys. Rev. Lett.
128
,
146804
(
2022
).
21
J.
Song
,
Z.
Yan
, and
B. A.
Malomed
, “
Formations and dynamics of two-dimensional spinning asymmetric quantum droplets controlled by a PT-symmetric potential
,”
Chaos
33
,
033141
(
2023
).
22
W.-B.
Bo
,
R.-R.
Wang
,
Y.
Fang
,
Y.-Y.
Wang
, and
C.-Q.
Dai
, “
Prediction and dynamical evolution of multipole soliton families in fractional Schrödinger equation with the PT-symmetric potential and saturable nonlinearity
,”
Nonlinear Dyn.
111
,
1577
1588
(
2023
).
23
Z.
Shi
,
X.
Jiang
,
X.
Zhu
, and
H.
Li
, “
Bright spatial solitons in defocusing kerr media with pt-symmetric potentials
,”
Phys. Rev. A
84
,
053855
(
2011
).
24
Y.
Chen
and
Z.
Yan
, “
Stable parity-time-symmetric nonlinear modes and excitations in a derivative nonlinear Schrödinger equation
,”
Phys. Rev. E
95
,
012205
(
2017
).
25
Y.
Chen
,
Z.
Yan
,
D.
Mihalache
, and
B. A.
Malomed
, “
Families of stable solitons and excitations in the PT-symmetric nonlinear Schrödinger equations with position-dependent effective masses
,”
Sci. Rep.
7
,
1257
(
2017
).
26
Y.
Chen
and
Z.
Yan
, “
Stable solitons in the 1D and 2D generalized nonlinear Schrödinger equations with the periodic effective mass and PT-symmetric potentials
,”
Ann. Phys.
386
,
44
57
(
2017
).
27
Y.
Chen
,
Z.
Yan
, and
X.
Li
, “
One-and two-dimensional gap solitons and dynamics in the PT-symmetric lattice potential and spatially-periodic momentum modulation
,”
Commun. Nonlinear Sci. Numer. Simul.
55
,
287
297
(
2018
).
28
Z.
Yan
, “
Integrable PT-symmetric local and nonlocal vector nonlinear Schrödinger equations: A unified two-parameter model
,”
Appl. Math. Lett.
47
,
61
68
(
2015
).
29
Z.
Yan
, “
Nonlocal general vector nonlinear Schrödinger equations: Integrability, PT symmetribility, and solutions
,”
Appl. Math. Lett.
62
,
101
109
(
2016
).
30
Z.
Yan
,
Y.
Chen
, and
Z.
Wen
, “
On stable solitons and interactions of the generalized Gross-Pitaevskii equation with PT-and non-PT-symmetric potentials
,”
Chaos
26
,
083109
(
2016
).
31
Z.
Yan
,
Y.
Chen
,
Y.
Shen
,
Z.
Wen
, and
X.
Li
,
Theory and Applications of PT-symmetric Nonlinear Wave Equations
(
Science Press
,
Beijing
,
2024
) (in Chinese).
32
P.
Li
,
D.
Mihalache
, and
L.
Li
, “
Asymmetric solitons in parity-time-symmetric double-hump Scarf-II potentials
,”
Rom. J. Phys.
61
,
1028
1039
(
2016
).
33
Z.
Yan
,
Z.
Wen
, and
C.
Hang
, “
Spatial solitons and stability in self-focusing and defocusing Kerr nonlinear media with generalized parity-time-symmetric Scarff-II potentials
,”
Phys. Rev. E
92
,
022913
(
2015
).
34
D. A.
Zezyulin
and
V. V.
Konotop
, “
Nonlinear modes in the harmonic PT-symmetric potential
,”
Phys. Rev. A
85
,
043840
(
2012
).
35
Z.-C.
Wen
and
Z.
Yan
, “
Dynamical behaviors of optical solitons in parity–time (PT) symmetric sextic anharmonic double-well potentials
,”
Phys. Lett. A
379
,
2025
2029
(
2015
).
36
J.
Song
and
Z.
Yan
, “
Deep learning soliton dynamics and complex potentials recognition for 1D and 2D PT-symmetric saturable nonlinear Schrödinger equations
,”
Physica D
448
,
133729
(
2023
).
37
J.
Song
,
M.
Zhong
,
G. E.
Karniadakis
, and
Z.
Yan
, “
Two-stage initial-value iterative physics-informed neural networks for simulating solitary waves of nonlinear wave equations
,”
J. Comput. Phys.
505
,
112917
(
2024
).
38
J.
Song
,
B. A.
Malomed
, and
Z.
Yan
, “
Symmetry-breaking bifurcations and excitations of solitons in linearly coupled NLS equations with PT-symmetric potentials
,”
Proc. R. Soc. A
479
,
20230457
(
2023
).
39
H.
Chen
,
Y.
Lee
, and
C.
Liu
, “
Integrability of nonlinear Hamiltonian systems by inverse scattering method
,”
Phys. Scr.
20
,
490
(
1979
).
40
S.
Xu
,
J.
He
, and
L.
Wang
, “
The Darboux transformation of the derivative nonlinear Schrödinger equation
,”
J. Phys. A
44
,
305203
(
2011
).
41
I.
Gadzhiev
,
V.
Gerdzhikov
, and
M.
Ivanov
, “
Hamiltonian structures of nonlinear evolution equations connected with a polynomial pencil
,”
J. Sov. Math.
34
,
1923
1932
(
1986
).
42
Y.
Zhang
,
L.
Guo
,
J.
He
, and
Z.
Zhou
, “
Darboux transformation of the second-type derivative nonlinear Schrödinger equation
,”
Lett. Math. Phys.
105
,
853
891
(
2015
).
43
M.
Ozisik
,
M.
Bayram
,
A.
Secer
, and
M.
Cinar
, “
Optical soliton solutions of the Chen–Lee–Liu equation in the presence of perturbation and the effect of the inter-modal dispersion, self-steepening and nonlinear dispersion
,”
Opt. Quantum Electron.
54
,
792
(
2022
).
44
L.
Akinyemi
,
N.
Ullah
,
Y.
Akbar
,
M. S.
Hashemi
,
A.
Akbulut
, and
H.
Rezazadeh
, “
Explicit solutions to nonlinear Chen–Lee–Liu equation
,”
Mod. Phys. Lett. B
35
,
2150438
(
2021
).
45
L.
Guo
,
Y.
Zhang
,
S.
Xu
,
Z.
Wu
, and
J.
He
, “
The higher order rogue wave solutions of the Gerdjikov–Ivanov equation
,”
Phys. Scr.
89
,
035501
(
2014
).
46
K.
Trulsen
,
I.
Kliakhandler
,
K. B.
Dysthe
, and
M. G.
Velarde
, “
On weakly nonlinear modulation of waves on deep water
,”
Phys. Fluids
12
,
2432
2437
(
2000
).
47
X.-Y.
Wen
,
Y.
Yang
, and
Z.
Yan
, “
Generalized perturbation (n, M)-fold Darboux transformations and multi-rogue-wave structures for the modified self-steepening nonlinear Schrödinger equation
,”
Phys. Rev. E
92
,
012917
(
2015
).
48
G.
Zhang
and
Z.
Yan
, “
The derivative nonlinear Schrödinger equation with zero/nonzero boundary conditions: Inverse scattering transforms and N-double-pole solutions
,”
J. Nonlinear Sci.
30
,
3089-3127
(
2020
).
49
W.
Xia
,
Y.
Ma
,
G.
Dong
,
J.
Zhang
, and
X.
Ma
, “
Emergence of solitons from irregular waves in deep water
,”
J. Mar. Sci. Eng.
9
,
1369
(
2021
).
50
J.
Yang
,
Nonlinear Waves in Integrable and Nonintegrable Systems
(
SIAM
,
2010
).
51
Z. H.
Musslimani
,
K. G.
Makris
,
R.
El-Ganainy
, and
D. N.
Christodoulides
, “
Analytical solutions to a class of nonlinear Schrödinger equations with PT-like potentials
,”
J. Phys. A
41
,
244019
(
2008
).
52
C.-Q.
Dai
,
X.-G.
Wang
, and
G.-Q.
Zhou
, “
Stable light-bullet solutions in the harmonic and parity-time-symmetric potentials
,”
Phys. Rev. A
89
,
013834
(
2014
).
53
Z.
Yan
, “
Complex PT-symmetric nonlinear Schrödinger equation and Burgers equation
,”
Philos. Trans. Roy. Soc. A
371
,
20120059
(
2013
).
54
Z.
Yan
,
Z.
Wen
, and
V. V.
Konotop
, “
Solitons in a nonlinear Schrödinger equation with PT-symmetric potentials and inhomogeneous nonlinearity: Stability and excitation of nonlinear modes
,”
Phys. Rev. A
92
,
023821
(
2015
).
55
P.
Gao
,
L.-C.
Zhao
,
Z.-Y.
Yang
,
X.-H.
Li
, and
W.-L.
Yang
, “
High-order rogue waves excited from multi-Gaussian perturbations on a continuous wave
,”
Opt. Lett.
45
,
2399
2402
(
2020
).
56
J.
Song
and
Z.
Yan
, “
Formation, propagation, and excitation of matter solitons and rogue waves in chiral BECs with a current nonlinearity trapped in external potentials
,”
Chaos
33
,
103132
(
2023
).
57
M.
Zhong
,
Y.
Chen
,
Z.
Yan
, and
B. A.
Malomed
, “
Suppression of soliton collapses, modulational instability and rogue-wave excitation in two-Lévy-index fractional Kerr media
,”
Proc. R. Soc. A
480
,
20230765
(
2024
).
58
K. G.
Makris
,
R.
El-Ganainy
,
D. N.
Christodoulides
, and
Z. H.
Musslimani
, “
Beam dynamics in PT symmetric optical lattices
,”
Phys. Rev. Lett.
100
,
103904
(
2008
).
59
K. G.
Makris
,
R.
El-Ganainy
,
D. N.
Christodoulides
, and
Z. H.
Musslimani
, “
PT-symmetric optical lattices
,”
Phys. Rev. A
81
,
063807
(
2010
).
60
K.
Makris
,
R.
El-Ganainy
,
D.
Christodoulides
, and
Z. H.
Musslimani
, “
PT-symmetric periodic optical potentials
,”
Int. J. Theor. Phys.
50
,
1019
1041
(
2011
).
61
B.
Midya
,
B.
Roy
, and
R.
Roychoudhury
, “
A note on the PT invariant periodic potential V ( x ) = 4 cos 2 x + 4 i V 0 sin 2 x
,”
Phys. Lett. A
374
,
2605
2607
(
2010
).
62
M. J.
Ablowitz
and
Z. H.
Musslimani
, “
Spectral renormalization method for computing self-localized solutions to nonlinear systems
,”
Opt. Lett.
30
,
2140
2142
(
2005
).
63
J.
Yang
, “
Newton-conjugate-gradient methods for solitary wave computations
,”
J. Comput. Phys.
228
,
7007
7024
(
2009
).
64
J.
Yang
and
T. I.
Lakoba
, “
Universally-convergent squared-operator iteration methods for solitary waves in general nonlinear wave equations
,”
Stud. Appl. Math.
118
,
153
197
(
2007
).
65
J.
Yang
and
T. I.
Lakoba
, “
Accelerated imaginary-time evolution methods for the computation of solitary waves
,”
Stud. Appl. Math.
120
,
265
292
(
2008
).
66
M.
Khader
, “
Numerical solutions for the problem of the boundary layer flow of a Powell–Eyring fluid over an exponential sheet using the spectral relaxation method
,”
Indian J. Phys.
94
,
1369
1374
(
2020
).
67
N.
Sweilam
and
M.
Khader
, “
A Chebyshev pseudo-spectral method for solving fractional-order integro-differential equations
,”
ANZIAM J.
51
,
464
475
(
2010
).
You do not currently have access to this content.