We study an exactly solvable random walk model with long-range memory on arbitrary networks. The walker performs unbiased random steps to nearest-neighbor nodes and intermittently resets to previously visited nodes in a preferential way such that the most visited nodes have proportionally a higher probability to be chosen for revisit. The occupation probability can be expressed as a sum over the eigenmodes of the standard random walk matrix of the network, where the amplitudes slowly decay as power-laws at large times, instead of exponentially. The stationary state is the same as in the absence of memory, and detailed balance is fulfilled. However, the relaxation of the transient part becomes critically self-organized at late times, as it is dominated by a single power-law whose exponent depends on the second largest eigenvalue and on the resetting probability. We apply our findings to finite networks, such as rings, complete graphs, Watts–Strogatz, and Barabási–Albert networks, and to Barbell and comb-like graphs. Our study could be of interest for modeling complex transport phenomena, such as human mobility, epidemic spreading, or animal foraging.

1.
A.
Barrat
,
M.
Barthélemy
, and
A.
Vespignani
,
Dynamical Processes on Complex Networks
(
Cambridge University Press
,
Cambridge
,
2008
).
2.
A.-L.
Barabási
,
Network Science
(
Cambridge University Press
,
Cambridge
,
2016
).
3.
M. E. J.
Newman
,
Networks
(
Oxford University Press
,
2018
).
4.
J. G.
Kemeny
and
J. L.
Snell
,
Finite Markov Chains
(
Van Nostrand
,
Princeton, NJ
,
1960
).
5.
E. W.
Montroll
, “
Random walks in multidimensional spaces, especially on periodic lattices
,”
J. Soc. Indust. Appl. Math.
4
,
241
(
1956
).
6.
B. D.
Hughes
,
Random Walks and Random Environments: Vol. 1: Random Walks
(
Oxford University Press
,
New York
,
1996
).
7.
N.
Masuda
,
M. A.
Porter
, and
R.
Lambiotte
, “
Random walks and diffusion on networks
,”
Phys. Rep.
716
,
1
(
2017
).
8.
L.
Lovász
, “
Random walks on graphs: A survey
,” in
Combinatorics, Paul Erdős Is Eighty
, edited by D. Miklós, V. T. Sós, and T. Szőnyi (
János Bolyai Mathematical Society
,
Budapest
,
1996
), Vol. 2, pp.
353
398
.
9.
J. D.
Noh
and
H.
Rieger
, “
Random walks on complex networks
,”
Phys. Rev. Lett.
92
,
118701
(
2004
).
10.
A. P.
Riascos
and
J. L.
Mateos
, “
Random walks on weighted networks: A survey of local and non-local dynamics
,”
J. Complex Netw.
9
,
cnab032
(
2021
).
11.
S.
Brin
and
L.
Page
, “
The anatomy of a large-scale hypertextual web search engine
,”
Comput. Netw. ISDN Syst.
30
,
107
(
1998
).
12.
P.
Blanchard
and
D.
Volchenkov
, Random Walks and Diffusions on Graphs and Databases. An Introduction, Springer Series in Synergetics (Springer, Berlin, 2011).
13.
M.
Rosvall
,
A. V.
Esquivel
,
A.
Lancichinetti
,
J. D.
West
, and
R.
Lambiotte
, “
Memory in network flows and its effects on spreading dynamics and community detection
,”
Nat. Commun.
5
,
4630
(
2014
).
14.
R.
Lambiotte
,
V.
Salnikov
, and
M.
Rosvall
, “
Effect of memory on the dynamics of random walks on networks
,”
J. Complex Netw.
3
,
177
(
2015
).
15.
L.
Basnarkov
,
M.
Mirchev
, and
L.
Kocarev
, “
Random walk with memory on complex networks
,”
Phys. Rev. E
102
,
042315
(
2020
).
16.
X.
Cao
,
Y.
Wang
,
C.
Li
,
T.
Weng
,
H.
Yang
, and
C.
Gu
, “
One-step memory random walk on complex networks: An efficient local navigation strategy
,”
Fluct. Noise Lett.
20
,
2150040
(
2021
).
17.
H.
Meyer
and
H.
Rieger
, “
Optimal non-Markovian search strategies with n-step memory
,”
Phys. Rev. Lett.
127
,
070601
(
2021
).
18.
Y.
Kim
,
S.
Park
, and
S.-H.
Yook
, “
Network exploration using true self-avoiding walks
,”
Phys. Rev. E
94
,
042309
(
2016
).
19.
G.
Colombani
,
G.
Bertagnolli
, and
O.
Artime
, “
Efficient network exploration by means of resetting self-avoiding random walkers
,”
J. Phys. Complex.
4
,
04LT01
(
2023
).
20.
V. M.
Lopez Millan
,
V.
Cholvi
,
L.
López
, and
A.
Fernandez Anta
, “
A model of self-avoiding random walks for searching complex networks
,”
Networks
60
,
71
(
2012
).
21.
A.
Valente
,
M.
De Domenico
, and
O.
Artime
, “
Non-Markovian random walks characterize network robustness to nonlocal cascades
,”
Phys. Rev. E
105
,
044126
(
2022
).
22.
G.
de Guzzi Bagnato
,
J. R. F.
Ronqui
, and
G.
Travieso
, “
Community detection in networks using self-avoiding random walks
,”
Physica A
505
,
1046
(
2018
).
23.
A. P.
Riascos
,
D.
Boyer
,
P.
Herringer
, and
J. L.
Mateos
, “
Random walks on networks with stochastic resetting
,”
Phys. Rev. E
101
,
062147
(
2020
).
24.
F. H.
González
,
A. P.
Riascos
, and
D.
Boyer
, “
Diffusive transport on networks with stochastic resetting to multiple nodes
,”
Phys. Rev. E
103
,
062126
(
2021
).
25.
S.
Wang
,
H.
Chen
, and
F.
Huang
, “
Random walks on complex networks with multiple resetting nodes: A renewal approach
,”
Chaos
31
,
093135
(
2021
).
26.
Y.
Ye
and
H.
Chen
, “
Random walks on complex networks under node-dependent stochastic resetting
,”
J. Stat. Mech.: Theory Exp.
2022
,
053201
.
27.
K.
Zelenkovski
,
T.
Sandev
,
R.
Metzler
,
L.
Kocarev
, and
L.
Basnarkov
, “
Random walks on networks with centrality-based stochastic resetting
,”
Entropy
25
,
293
(
2023
).
28.
M. R.
Evans
and
S. N.
Majumdar
, “
Diffusion with stochastic resetting
,”
Phys. Rev. Lett.
106
,
160601
(
2011
).
29.
M. R.
Evans
and
S. N.
Majumdar
, “
Diffusion with optimal resetting
,”
J. Phys. A: Math. Theor.
44
,
435001
(
2011
).
30.
M. R.
Evans
,
S. N.
Majumdar
, and
G.
Schehr
, “
Stochastic resetting and applications
,”
J. Phys. A: Math. Theor.
53
,
193001
(
2020
).
31.
S.
Gupta
and
A. M.
Jayannavar
, “
Stochastic resetting: A (very) brief review
,”
Front. Phys.
10
,
789097
(
2022
).
32.
A.
Pal
and
S.
Reuveni
, “
First passage under restart
,”
Phys. Rev. Lett.
118
,
030603
(
2017
).
33.
S.
Belan
, “
Restart could optimize the probability of success in a Bernoulli trial
,”
Phys. Rev. Lett.
120
,
080601
(
2018
).
34.
M. R.
Evans
and
S. N.
Majumdar
, “
Diffusion with resetting in arbitrary spatial dimension
,”
J. Phys. A: Math. Theor.
47
,
285001
(
2014
).
35.
D.
Boyer
and
C.
Solis-Salas
, “
Random walks with preferential relocations to places visited in the past and their application to biology
,”
Phys. Rev. Lett.
112
,
240601
(
2014
).
36.
L.
Giuggioli
,
S.
Gupta
, and
M.
Chase
, “
Comparison of two models of tethered motion
,”
J. Phys. A: Math. Theor.
52
,
075001
(
2019
).
37.
A.
Pal
,
Ł.
Kuśmierz
, and
S.
Reuveni
, “
Search with home returns provides advantage under high uncertainty
,”
Phys. Rev. Res.
2
,
043174
(
2020
).
38.
S.
Reuveni
,
M.
Urbakh
, and
J.
Klafter
, “
Role of substrate unbinding in Michaelis–Menten enzymatic reactions
,”
Proc. Natl. Acad. Sci. U.S.A.
111
,
4391
4396
(
2014
).
39.
T.
Rotbart
,
S.
Reuveni
, and
M.
Urbakh
, “
Michaelis-Menten reaction scheme as a unified approach towards the optimal restart problem
,”
Phys. Rev. E
92
,
060101
(
2015
).
40.
A.
Pal
and
V.
Prasad
, “
Landau-like expansion for phase transitions in stochastic resetting
,”
Phys. Rev. Res.
1
,
032001
(
2019
).
41.
D.
Campos
and
V.
Méndez
, “
Phase transitions in optimal search times: How random walkers should combine resetting and flight scales
,”
Phys. Rev. E
92
,
062115
(
2015
).
42.
B.
Besga
,
A.
Bovon
,
A.
Petrosyan
,
S. N.
Majumdar
, and
S.
Ciliberto
, “
Optimal mean first-passage time for a Brownian searcher subjected to resetting: Experimental and theoretical results
,”
Phys. Rev. Res.
2
,
032029
(
2020
).
43.
O.
Tal-Friedman
,
A.
Pal
,
A.
Sekhon
,
S.
Reuveni
, and
Y.
Roichman
, “
Experimental realization of diffusion with stochastic resetting
,”
J. Phys. Chem. Lett.
11
,
7350
(
2020
).
44.
O.
Blumer
,
S.
Reuveni
, and
B.
Hirshberg
, “
Combining stochastic resetting with metadynamics to speed-up molecular dynamics simulations
,”
Nat. Commun.
15
,
240
(
2024
).
45.
Y.
Bae
,
G.
Son
, and
H.
Jeong
, “
Unexpected advantages of exploitation for target searches in complex networks
,”
Chaos
32
,
083118
(
2022
).
46.
A. P.
Riascos
and
J. L.
Mateos
, “
Emergence of encounter networks due to human mobility
,”
PLoS One
12
,
e0184532
(
2017
).
47.
C.
Song
,
T.
Koren
,
P.
Wang
, and
A.-L.
Barabási
, “
Modelling the scaling properties of human mobility
,”
Nat. Phys.
6
,
818
(
2010
).
48.
L.
Pappalardo
,
S.
Rinzivillo
, and
F.
Simini
, “
Human mobility modelling: Exploration and preferential return meet the gravity model
,”
Procedia Comput. Sci.
83
,
934
(
2016
).
49.
J.
Wang
,
L.
Dong
,
X.
Cheng
,
W.
Yang
, and
Y.
Liu
, “
An extended exploration and preferential return model for human mobility simulation at individual and collective levels
,”
Physica A
534
,
121921
(
2019
).
50.
M.
Schläpfer
,
L.
Dong
,
K.
O’Keeffe
,
P.
Santi
,
M.
Szell
,
H.
Salat
,
S.
Anklesaria
,
M.
Vazifeh
,
C.
Ratti
, and
G. B.
West
, “
The universal visitation law of human mobility
,”
Nature
593
,
522
(
2021
).
51.
O.
Cabanas-Tirapu
,
L.
Danús
,
E.
Moro
,
M.
Sales-Pardo
, and
R.
Guimerà
, “Human mobility is well described by closed-form gravity-like models learned automatically from data,” arXiv:2312.11281 (2023).
52.
J. A.
Merkle
,
D.
Fortin
, and
J. M.
Morales
, “
A memory-based foraging tactic reveals an adaptive mechanism for restricted space use
,”
Ecol. Lett.
17
,
924
(
2014
).
53.
O.
Vilk
,
D.
Campos
,
V.
Méndez
,
E.
Lourie
,
R.
Nathan
, and
M.
Assaf
, “
Phase transition in a non-Markovian animal exploration model with preferential returns
,”
Phys. Rev. Lett.
128
,
148301
(
2022
).
54.
N.
Ranc
,
P. R.
Moorcroft
,
F.
Ossi
, and
F.
Cagnacci
, “
Experimental evidence of memory-based foraging decisions in a large wild mammal
,”
Proc. Natl. Acad. Sci. U.S.A.
118
,
e2014856118
(
2021
).
55.
D.
Boyer
,
M. R.
Evans
, and
S. N.
Majumdar
, “
Long time scaling behaviour for diffusion with resetting and memory
,”
J. Stat. Mech.: Theory Exp.
2017
,
023208
.
56.
D.
Boyer
and
I.
Pineda
, “
Slow Lévy flights
,”
Phys. Rev. E
93
,
022103
(
2016
).
57.
D.
Campos
and
V.
Méndez
, “
Recurrence time correlations in random walks with preferential relocation to visited places
,”
Phys. Rev. E
99
,
062137
(
2019
).
58.
A.
Masó-Puigdellosas
,
D.
Campos
, and
V.
Méndez
, “
Anomalous diffusion in random-walks with memory-induced relocations
,”
Front. Phys.
7
,
112
(
2019
).
59.
D.
Boyer
and
S. N.
Majumdar
, “
Active particle in one dimension subjected to resetting with memory
,”
Phys. Rev. E
109
,
054105
(
2024
).
60.
D.
Boyer
and
J.
Romo-Cruz
, “
Solvable random-walk model with memory and its relations with Markovian models of anomalous diffusion
,”
Phys. Rev. E
90
,
042136
(
2014
).
61.
C.
Mailler
and
G. U.
Bravo
, “
Random walks with preferential relocations and fading memory: A study through random recursive trees
,”
J. Stat. Mech.: Theory Exp.
2019
,
093206
.
62.
E.-S.
Boci
and
C.
Mailler
, “Central limit theorems for the monkey walk with steep memory kernel,” arXiv:2409.02861 (2024).
63.
E.-S.
Boci
and
C.
Mailler
, “
Large deviation principle for a stochastic process with random reinforced relocations
,”
J. Stat. Mech.: Theory Exp.
2023
,
083206
.
64.
D.
Boyer
and
S. N.
Majumdar
, “
Power-law relaxation of a confined diffusing particle subject to resetting with memory
,”
J. Stat. Mech.: Theory Exp.
2024
,
073206
.
65.
Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, edited by M. Abramowitz and I. A. Stegun (Dover, New York, 1965).
66.
D.
Boyer
,
M. R.
Evans
, and
S. N.
Majumdar
, “Diffusion with preferential relocation in a confining potential,” arXiv:2411.00641 (2024).
67.
P.
Van Mieghem
,
Graph Spectra for Complex Networks
(
Cambridge University Press
,
Cambridge
,
2023
).
68.
A.
Riascos
and
J. L.
Mateos
, “
Fractional diffusion on circulant networks: Emergence of a dynamical small world
,”
J. Stat. Mech.: Theory Exp.
2015
,
P07015
.
69.
A.-L.
Barabási
and
R.
Albert
, “
Emergence of scaling in random networks
,”
Science
286
,
509
(
1999
).
70.
D. J.
Watts
and
S. H.
Strogatz
, “
Collective dynamics of ‘small-world’ networks
,”
Nature
393
,
440
(
1998
).
71.
Asmiati
,
I.
Ketut Sadha Gunce Yana
, and
L.
Yulianti
, “
On the locating chromatic number of certain Barbell graphs
,”
Int. J. Math. Math. Sci.
2018
,
5327504
.
72.
E.
Agliari
,
A.
Blumen
, and
D.
Cassi
, “
Slow encounters of particle pairs in branched structures
,”
Phys. Rev. E
89
,
052147
(
2014
).
73.
B.
Durhuus
,
T.
Jonsson
, and
J. F.
Wheater
, “
Random walks on combs
,”
J. Phys. A: Math. Gen.
39
,
1009
(
2006
).
74.
V.
Méndez
and
A.
Iomin
, “
Comb-like models for transport along spiny dendrites
,”
Chaos, Sol. Fractals
53
,
46
(
2013
).
75.
A. P.
Riascos
and
D. P.
Sanders
, “
Mean encounter times for multiple random walkers on networks
,”
Phys. Rev. E
103
,
042312
(
2021
).
76.
V.
Domazetoski
,
A.
Masó-Puigdellosas
,
T.
Sandev
,
V.
Méndez
,
A.
Iomin
, and
L.
Kocarev
, “
Stochastic resetting on comblike structures
,”
Phys. Rev. Res.
2
,
033027
(
2020
).
77.
A.
Masó-Puigdellosas
,
T.
Sandev
, and
V.
Méndez
, “
Random walks on comb-like structures under stochastic resetting
,”
Entropy
25
,
1529
(
2023
).
78.
R.
Metzler
and
J.
Klafter
, “
The random walk’s guide to anomalous diffusion: A fractional dynamics approach
,”
Phys. Rep.
339
,
1
(
2000
).
79.
M.
Bestehorn
,
T. M.
Michelitsch
,
B. A.
Collet
,
A. P.
Riascos
, and
A. F.
Nowakowski
, “
Simple model of epidemic dynamics with memory effects
,”
Phys. Rev. E
105
,
024205
(
2022
).
You do not currently have access to this content.