In this paper, the complex and dynamically rich distribution of stable phases in the well-known discrete Ikeda map is studied in detail. The unfolding patterns of these stable phases are described through three complementary stability diagrams: the Lyapunov stability diagram, the isoperiod stability diagram, and the isospike stability diagram. The adding-doubling complexification cascade and fascinating non-quantum chiral pairs are discovered, marking the first report of such structures in discrete mapping. The inherent symmetry of the Ikeda map also leads to the emergence of even more complex chiral formations. Additionally, the effects of initial value perturbations on stable phase topology are explored, revealing that in near-conservative states, small changes in initial conditions significantly disturb the system, resulting in the discovery of a multitude of previously hidden shrimp islands. Our findings enhance the understanding of non-quantum chiral structures within discrete systems and offer new insights into the intricate manifestations of stability and multistability in complex mappings.

1.
L.
Folke Olsen
, “
Complex dynamics in an unexplored simple model of the peroxidase–oxidase reaction
,”
Chaos
33
(
2
),
023102
(
2023
).
2.
R.
Kumbhakar
,
M.
Hossain
,
S.
Karmakar
, and
N.
Pal
, “
An investigation of the parameter space in a tri-trophic food chain model with refuge
,”
Math. Comput. Simul.
217
,
37
59
(
2024
).
3.
R.
Kumbhakar
,
M.
Hossain
, and
N.
Pal
, “
Dynamics of a two-prey one-predator model with fear and group defense: A study in parameter planes
,”
Chaos, Solitons Fractals
179
,
114449
(
2024
).
4.
J. A.
Gallas
, “
Non-quantum chirality in a driven brusselator
,”
J. Phys.: Condens. Matter
34
(
14
),
144002
(
2022
).
5.
G. M.
Ramírez-Ávila
,
J.
Kurths
, and
J. A.
Gallas
, “
Ubiquity of ring structures in the control space of complex oscillators
,”
Chaos
31
(
10
),
101102
(
2021
).
6.
M. R.
Gallas
,
M. R.
Gallas
, and
J. A.
Gallas
, “
Distribution of chaos and periodic spikes in a three-cell population model of cancer
,”
Eur. Phys. J. Spec. Top.
223
(
11
),
2131
2144
(
2014
).
7.
J. A.
Gallas
, “
Chirality detected in Hartley’s electronic oscillator
,”
Eur. Phys. J. Plus
136
(
10
),
1048
(
2021
).
8.
C. K.
Volos
and
J. A.
Gallas
, “
Experimental evidence of quint points and non-quantum chirality in a minimalist autonomous electronic oscillator
,”
Eur. Phys. J. Plus
137
(
1
),
154
(
2022
).
9.
L.
Xu
,
Y.-D.
Chu
, and
Q.
Yang
, “
Novel dynamical scenario of the two-stage Colpitts oscillator
,”
Chaos, Solitons Fractals
138
,
109998
(
2020
).
10.
Z.
Liu
,
X.
Rao
,
J.
Gao
, and
S.
Ding
, “
Non-quantum chirality and periodic islands in the driven double pendulum system
,”
Chaos, Solitons Fractals
177
,
114254
(
2023
).
11.
J. A.
Gallas
, “
Overlapping adding-doubling spikes cascades in a semiconductor laser proxy
,”
Braz. J. Phys.
51
(
4
),
919
926
(
2021
).
12.
S.
Gu
,
P.
Zhou
, and
N.
Li
, “
Non-quantum chiral structure in a free-running VCSEL
,”
Opt. Lett.
48
(
11
),
2845
2848
(
2023
).
13.
B.-K.
Hou
,
J.-S.
Gao
,
X.-B.
Rao
, and
S.-L.
Ding
, “
Novel organizational patterns of stability phases in a single-species population model: Chiral tree, spikes adding-doubling complexification cascade
,”
Nonlinear Dyn.
112
,
17611–17626
(
2024
).
14.
J. A.
Gallas
, “
Dissecting shrimps: Results for some one-dimensional physical models
,”
Phys. A
202
(
1-2
),
196
223
(
1994
).
15.
S. L.
de Souza
,
A. A.
Lima
,
I. L.
Caldas
,
R. O.
Medrano-T
, and
Z. D. O.
Guimarães-Filho
, “
Self-similarities of periodic structures for a discrete model of a two-gene system
,”
Phys. Lett. A
376
(
15
),
1290
1294
(
2012
).
16.
N.
Pati
, “
Spiral organization of quasi-periodic shrimp-shaped domains in a discrete predator–prey system
,”
Chaos
34
(
8
),
083126
(
2024
).
17.
N.
Pati
,
G.
Layek
, and
N.
Pal
, “
Bifurcations and organized structures in a predator-prey model with hunting cooperation
,”
Chaos, Solitons Fractals
140
,
110184
(
2020
).
18.
K.
Ikeda
, “
Multiple-valued stationary state and its instability of the transmitted light by a ring cavity system
,”
Opt. Commun.
30
(
2
),
257
261
(
1979
).
19.
A.
Kuznetsov
,
L.
Turukina
, and
E.
Mosekilde
, “
Dynamical systems of different classes as models of the kicked nonlinear oscillator
,”
Int. J. Bifurcation Chaos
11
(
04
),
1065
1077
(
2001
).
20.
A.
Ouannas
,
A.-A.
Khennaoui
,
Z.
Odibat
,
V.-T.
Pham
, and
G.
Grassi
, “
On the dynamics, control and synchronization of fractional-order Ikeda map
,”
Chaos, Solitons Fractals
123
,
108
115
(
2019
).
21.
Z.
Galias
, “
Rigorous investigation of the Ikeda map by means of interval arithmetic
,”
Nonlinearity
15
(
6
),
1759
(
2002
).
22.
A.
Ray
,
S.
Rakshit
,
D.
Ghosh
, and
S. K.
Dana
, “
Intermittent large deviation of chaotic trajectory in Ikeda map: Signature of extreme events
,”
Chaos
29
(
4
),
043131
(
2019
).
23.
A.
Kuznetsov
,
A.
Savin
, and
D.
Savin
, “
On some properties of nearly conservative dynamics of Ikeda map and its relation with the conservative case
,”
Phys. A
387
(
7
),
1464
1474
(
2008
).
24.
R. J.
Field
,
J. G.
Freire
, and
J. A.
Gallas
, “
Quint points lattice in a driven Belousov–Zhabotinsky reaction model
,”
Chaos
31
(
5
),
053124
(
2021
).
25.
J. R.
Araújo
and
J. A.
Gallas
, “
Nested sequences of period-adding stability phases in a CO 2 laser map proxy
,”
Chaos, Solitons Fractals
150
,
111180
(
2021
).
26.
Z.
Liu
,
J.
Gao
,
X.
Rao
,
S.
Ding
, and
D.
Liu
, “
Complex dynamics of the passive biped robot with flat feet: Gait bifurcation, intermittency and crisis
,”
Mech. Mach. Theory
191
,
105500
(
2024
).
You do not currently have access to this content.