Complex network approaches have been emerging as an analysis tool for dynamical systems. Different reconstruction methods from time series have been shown to reveal complicated behaviors that can be quantified from the network’s topology. Directed recurrence networks have recently been suggested as one such method, complementing the already successful recurrence networks and expanding the applications of recurrence analysis. We investigate here their performance for the analysis of nonlinear and complex dynamical systems. It is shown that there is a strong parallel with previous Markov chain approximations of the transfer operator, as well as a few differences explained by their structure. Notably, the spectral analysis provides crucial information on the dynamics of the system, such as its complexity or dynamical patterns and their stability. Possible advantages of the directed recurrence network approach include the preserved data resolution and well defined recurrence threshold.

1.
Z. K.
Gao
,
M.
Small
, and
J.
Kurths
,
EPL
116
,
50001
(
2016
).
2.
Y.
Zou
,
R. V.
Donner
,
N.
Marwan
,
J. F.
Donges
, and
J.
Kurths
,
Phys. Rep.
787
,
1
(
2019
).
3.
N.
Marwan
,
J. F.
Donges
,
Y.
Zou
,
R. V.
Donner
, and
J.
Kurths
,
Phys. Lett. A
373
,
4246
(
2009
).
4.
R. V.
Donner
,
Y.
Zou
,
J. F.
Donges
,
N.
Marwan
, and
J.
Kurths
,
New J. Phys.
12
,
033025
(
2010
).
5.
J.
Zhang
and
M.
Small
,
Phys. Rev. Lett.
96
,
238701
(
2006
).
6.
Y.
Yang
and
H.
Yang
,
Physica A
387
,
1381
(
2008
).
7.
L.
Lacasa
,
B.
Luque
,
F.
Ballesteros
,
J.
Luque
, and
J. C.
Nuno
,
Proc. Natl. Acad. Sci.
105
,
19601
(
2008
).
8.
L.
Lacasa
and
W.
Just
,
Physica D
374–375
,
35
(
2018
).
9.
G.
Nicolis
,
A. G.
Cant
, and
C.
Nicolis
,
J. Bifurcation Chaos
15
,
3467
(
2005
).
10.
K.
Padberg
,
B.
Thiere
,
R.
Preis
, and
M.
Dellnitz
,
Commun. Nonlinear Sci. Numer. Simul.
14
,
4176
(
2009
).
11.
M.
Small
, in
2013 IEEE International Symposium on Circuits and Systems (ISCAS)
(IEEE, 2013), p. 2509.
12.
M.
McCullough
,
M.
Small
,
T.
Stemler
, and
H. H. C.
Iu
,
Chaos
25
,
053101
(
2015
).
13.
M.
Dellnitz
and
O.
Junge
,
SIAM J. Numer. Anal.
36
,
491
(
1999
).
14.
G.
Froyland
, “Extracting dynamical behavior via Markov models,” in
Nonlinear Dynamics and Statistics
, edited by A. I. Mees (Birkhäuser, Boston, MA, 2001).
15.
G.
Froyland
and
M.
Dellnitz
,
SIAM J. Sci. Comput.
24
,
1839
(
2003
).
16.
G.
Froyland
and
K.
Padberg
,
Physica D
238
,
1507
(
2009
).
17.
G.
Froyland
,
D.
Giannakis
,
E.
Luna
, and
J.
Slawinska
,
Nat. Commun.
15
,
4268
(
2024
).
18.
R.
Delage
and
T.
Nakata
,
Chaos
33
,
113103
(
2023
).
19.
N.
Marwan
,
M. C.
Romano
,
M.
Thiel
, and
J.
Kurths
,
Phys. Rep.
438
,
237
(
2007
).
20.
R.
Delage
and
T.
Nakata
,
Chaos
33
,
083142
(
2023
).
21.
E.
Seabrook
and
L.
Wiskott
,
Neural Comput.
35
,
1713
(
2023
).
22.
G.
Froyland
,
D.
Giannakis
,
B. R.
Lintner
,
M.
Pike
, and
J.
Slawinska
,
Nat. Commun.
12
,
6570
(
2021
).
23.
L.
Demetrius
and
T.
Manke
,
Physica A
346
,
682
(
2005
).
24.
matlab
, version R2021a, The MathWorks Inc., Natick, MA, 2022.
25.
J. M.
Moore
,
H.
Wang
,
M.
Small
,
G.
Yan
,
H.
Yang
, and
C.
Gu
,
Phys. Rev. E
107
,
034310
(
2023
).
26.
G.
Froyland
,
K.
Padberg
,
M. H.
England
, and
A. M.
Treguier
,
Phys. Rev. Lett.
98
,
224503
(
2007
).
27.
Institute for Sustainable Energy Policies, see https://isep-energychart.com/en/graphics/ for “Electricity Generation and Demand” (accessed 1 October 2023).
28.
R.
Delage
and
T.
Nakata
,
Energies
15
,
6292
(
2022
).
29.
N. H.
Packard
,
J. P.
Crutchfield
,
J. D.
Farmer
, and
R. S.
Shaw
,
Phys. Rev. Lett.
45
,
712
(
1980
).
30.
31.
H.
Teichgraeber
and
A. R.
Brandt
,
Renewable Sustainable Energy Rev.
157
,
111984
(
2022
).
You do not currently have access to this content.