A nonlinear-dynamical algorithm for city planning is proposed as an impulse pattern formulation (IPF) for predicting relevant parameters such as health, artistic freedom, or financial developments of different social or political stakeholders over the cause of a planning process. The IPF has already shown high predictive precision at low computational cost in musical instrument simulations, brain dynamics, and human–human interactions. The social and political IPF consists of three basic equations of system state developments, self-adaptation of stakeholders, two adaptive interactions, and external impact terms suitable for respective planning situations. Typical scenarios of stakeholder interactions and developments are modeled by adjusting a set of system parameters. These include stakeholder reaction to external input, enhanced system stability through self-adaptation, stakeholder convergence due to adaptive interaction, as well as complex dynamics in terms of fixed stakeholder impacts. A workflow for implementing the algorithm in real city planning scenarios is outlined. This workflow includes machine learning of a suitable set of parameters suggesting best-practice planning to aim at the desired development of the planning process and its output.

1.
A.
Abas
,
K.
Arifin
,
M.
Azhar
,
M.
Ali
, and
M.
Khairil
, “
A systematic literature review on public participation in decision-making for local authority planning: A decade of progress and challenges
,”
Environ. Dev.
46
,
100853
(
2023
).
2.
V.
Chaturvedi
and
W. T.
de Vries
, “
Machine learning algorithms for urban land use planning: A review
,”
Urban Sci.
5
,
68
(
2021
).
3.
R. G.
Wilkinson
and
K. E.
Pickett
, “
Why the world cannot afford the rich
,”
Nature
627
,
268
270
(
2024
).
4.
S.
Necker
, “Das ‘frappant,’ moderneREGIONAL, 14/2,” see https://www.moderne-regional.de/fachbeitrag-frappant-hamburg/ (2014).
5.
B.
Latour
,
Politics of Nature: How to Bring the Sciences Into Democracy
(
Harvard University Press
,
Cambridge
,
2022
).
6.
B.
Latour
,
Facing Gaia: Eight Lecutres on the New Climate Regime
(
Polity
,
Cambridge, Medford
,
2017
).
7.
J.
Lovelock
,
The Age of Gaia. A Biography of Our Living Earch
(
W. W. Norton & Co.
,
London, NY
,
1988
).
8.
L.
Margulis
,
Symbiotic Planet: A New Look at Evolution
(
Basic Books
,
1998
).
9.
E.
Smith
and
H. J.
Morowith
,
The Origin and Nature of Life on Earth. The Emergence of the Fourth Geosphere
(
Cambridge University Press
,
2016
).
10.
A. J.
Watson
and
J. E.
Lovelock
, “
Biological homeostasis of the global environment. The parable of Daisyworld
,”
Tellus
35/B
,
286
289
(
1983
).
11.
J. C.
Flack
and
D. C.
Krakauer
, “
Challenges for complexity measures: A perspective from social dynamics and collective social computation
,”
Chaos
21
,
037108
(
2011
).
12.
R.
Rajaan
,
B. K.
Baishya
,
T. V.
Rao
,
B.
Pttanaik
,
M. A.
Tripathi
, and
R.
Anitha
, “
Efficient usage of energy infrastructure in smart city using machine learning
,”
EAI Endorsed Trans. Internet Things
10
,
1–7
(
2023
).
13.
M.
Titz
,
F.
Kaiser
,
J.
Kruse
, and
W.
Witthaut
, “
Predicting dynamic stability from static features in power grid models using machine learning
,”
Chaos
34
(
1
),
013139
(
2024
).
14.
J. Z.
Xinghui Lei
, “
A system dynamics model for urban low-carbon transport and simulation in the city of Shanghai, China
,”
Int. J. Adv. Inf. Sci. Serv. Sci.
4
(1),
239
246
(
2012
).
15.
H.
Coskun
, “
Eco-city planning; concepts and contemporary models
,”
Global J. Ecol.
8
(
2
),
110
119
(
2023
).
16.
C.
Tucci
and
G.
Ratti
, “
Technology as an enabler of a new ecosystem responsive urbanism
,”
AGATHÓN Int. J. Archit. Art Des.
12
,
190
201
(
2022
).
17.
T.
Minh Pham
,
I.
Kondor
,
R.
Hanel
, and
S.
Thurner
, “
The effect of social balance on social fragmentation
,”
J. R. Soc. Interface
17
,
20200752
(
2020
).
18.
M. W.
Macya
,
M.
Mac
,
D. R.
Tabinc
,
J.
Gaoc
, and
B. K.
Szymanskic
, “
Polarization and tipping points
,”
Proc. Natl. Acad. Sci. U.S.A.
118
(
50
),
e2102144118
(
2021
).
19.
N.
Loy
,
M.
Raviola
, and
A.
Tosin
, “
Opinion polarization in social networks
,”
Philos. Trans. R. Soc. A
380
,
20210158
(
2022
).
20.
F.
Baumann
,
Ph.
Lorenz-Spreen
,
I. M.
Sokolov
, and
M.
Starnini
, “Modeling echo chambers and polarization dynamics in social networks,” see opinarXiv:1906.12325v2 [physics.soc-ph] (2020).
21.
F.
Heider
, “
Attitudes and cognitive organization
,”
J. Psychol.
21
,
107
112
(
1946
).
22.
H. F.
Taylor
,
Balance in Small Groups. Sociological Concepts, Methods, and Data Series
(
Van Nostrand Reinhold Company
,
New York
,
1970
).
23.
S. A.
Marvel
,
J.
Kleinberg
,
R. D.
Kleinberg
, and
S. H.
Strogatz
, “
Continuous-time model of structural balance
,”
Proc. Natl. Acad. Sci. U.S.A.
108
,
1771
1776
(
2011
).
24.
A.
Jedrzejewski
and
K.
Sznajd-Wero
, “
Competing local and global interactions in social dynamics: How important is the friendship network?
,”
Chaos
30
,
073105
(
2020
).
25.
R.
Bader
, Nonlinearities and Synchronization in Musical Acoustics and Music Psychology, Current Research in Systematic Musicology Vol. 2 (Springer-Verlag, Berlin, 2013).
26.
S.
Linke
,
R.
Bader
, and
R.
Mores
, “
Influence of the supporting table on initial transients of the fretted zither: An impulse pattern formulation model
,”
Proc. Mtgs. Acoust.
43
,
035003
(
2021
).
27.
S.
Linke
,
R.
Bader
, and
R.
Mores
, “
Measurements and impulse pattern formulation (IPF) model of phase transitions in free-reed wind instruments
,”
JASA
146
,
2779
(
2019
).
28.
S.
Linke
,
R.
Bader
, and
R.
Mores
, “Modeling synchronization in human musical rhythms using impulse pattern formulation (IPF),” see arXiv:submit/4062462[q-bio.NC] (December 6, 2021).
29.
G.
Buzsáki
,
Rhythms of the Brain
(
Oxford University Press
,
2006
).
30.
G. E.
Ha
and
E.
Cheong
,
Spike frequency adaptation in neurons of the central nervous system
,”
Exp. Neurobiol.
26
,
179
185
(
2017
).
31.
T.
Fardet
and
A.
Levina
, “
Simple models including energy and spike cons
,”
PLoS Comput. Biol.
16
(
12
),
e1008503
(
2020
).
32.
G.
Fuhrmann
,
H.
Markram
, and
M.
Tsodyks
, “
Spike frequency adaptation and neocortical rhythms
,”
Neurophysiology
88
,
761
770
(
2002
).
33.
R.
Bader
, “Impulse pattern formulation (IPF) brain model,” see arXiv:submit/4660893[q-bio.NC] (December 21, 2022).
34.
R.
Bader
, “
Modeling temporal lobe epilepsy during music large-scale form perception using the impulse pattern formulation (IPF) brain model
,”
Electronics
13
(
2
),
362
(
2024
).
35.
R.
Bader
,
How Music Works. A Physical Culture Theory
(
Springer Nature
,
2021
).
36.
J. A.
List
, “
Optimally generate policy-based evidence before scaling
,”
Nature
626
,
491
499
(
2024
).
37.
J.
Sawicki
,
R.
Berner
,
S. A. M.
Loos
,
M.
Anvari
,
R.
Bader
,
W.
Barfuss
,
B.
Botta
,
N.
Brede
,
I.
Franović
,
D. J.
Gauthier
,
S.
Goldt
,
A.
Hajizadeh
,
Ph.
Hövel
,
O.
Karin
,
Ph.
Lorenz-Spreen
,
Ch.
Miehl
,
J.
Mölter
,
S.
Olmi
,
E.
Schöll
,
A.
Seif
,
E. A.
Tass
,
G.
Volpe
,
S.
Yanchuk
, and
J.
Kurths
, “
Perspectives on adaptive dynamical systems
,”
Chaos
33
,
071501
(
2023
).
38.
S.
Linke
,
R.
Bader
, and
R.
Mores
, “Multiphonic modeling using impulse pattern formulation (IPF),” see arXiv:submit/2201.05452[cs.SD] (January 14, 2022).
39.
S.
Linke
,
R.
Bader
, and
R.
Mores
, “
The impulse pattern formulation (IPF) as a model of musical instruments’ investigation of stability and limits
,”
Chaos
29
,
103109
(
2019
).
40.
R.
Berner
,
T.
Gross
,
C.
Kuehn
,
J.
Kurths
, and
S.
Yanchuk
, “
Adaptive dynamical networks
,”
Phys. Rep.
1
,
2023
(
1031
).
41.
R.
Berner
,
S.
Vock
,
E.
Schöll
, and
S.
Yanchuk
, “
Desynchronization transitions in adaptive networks
,”
Phys. Rev. Lett.
126
(
2
),
028301
(
2021
).
42.
M.
Blaß
and
R.
Bader
, “Content based music retrieval and visualization system for ethnomusicological music archives,” in Computational Phonogram Archiving, Springer Series: Current Research in Systematic Musicology, edited by R. Bader (Springer, Heidelberg, 2019), Vol. 5, pp. 145–174.
43.
T.
Kohonen
,
Self-Organizing Maps
(
Springer
,
Berlin
,
1995
).
You do not currently have access to this content.