The emergence of multi-disease epidemics presents an escalating threat to global health. In response to this serious challenge, we present an innovative stochastic susceptible–vaccinated–infected–recovered epidemic model that addresses the dynamics of two diseases alongside intricate vaccination strategies. Our novel model undergoes a comprehensive exploration through both theoretical and numerical analyses. The stopping time concept, along with appropriate Lyapunov functions, allows us to explore the possibility of a globally positive solution. Through the derivation of reproduction numbers associated with the stochastic model, we establish criteria for the potential extinction of the diseases. The conditions under which one or both diseases may persist are explained. In the numerical aspect, we derive a computational scheme based on the Milstein method. The scheme will not only substantiate the theoretical results but also facilitate the examination of the impact of parameters on disease dynamics. Through examples and simulations, we have a crucial impact of varying parameters on the system’s behavior.

1.
M.
Howard
and
K.
Samuel
,
An Introduction to Stochastic Modeling
(
Academic Press
,
1998
).
2.
A.
Kemp
and
P.
Guttorp
, “
Stochastic modeling of scientific data
,”
Biometrics
53
,
1178
(
1997
).
3.
B.
Nelson
,
Stochastic Modeling: Analysis & Simulation
(
Courier Corporation
,
2010
).
4.
N.
Lanchier
,
Stochastic Modeling
(
Springer
,
Berlin
,
2017
).
5.
B.
Øksendal
and
A.
Sulem
,
Applied Stochastic Control of Jump Diffusions
(
Springer Nature
,
Switzerland
,
2019
).
6.
A.
Steland
,
E.
Rafajłowicz
, and
O.
Okhrin
,
Stochastic Models, Statistics and Their Applications
(
Springer
,
2019
), Vol. 294.
7.
J.
Hernández
,
R.
Benito
, and
J.
Losada
, “
An adaptive stochastic model for financial markets
,”
Chaos, Solitons Fractals
45
,
899
908
(
2012
).
8.
L.
Lima
and
G.
Santos
, “
Stochastic process with multiplicative structure for the dynamic behavior of the financial market
,”
Phys. A
512
,
222
229
(
2018
).
9.
F.
Leurent
,
V.
Benezech
, and
M.
Samadzad
, “
A stochastic model of trip end disaggregation in traffic assignment to a transportation network
,”
Proc. Soc. Behav. Sci.
20
,
485
494
(
2011
).
10.
Z.
Liu
and
Q.
Meng
, “
Bus-based park-and-ride system: A stochastic model on multimodal network with congestion pricing schemes
,”
Int. J. Syst. Sci.
45
,
994
1006
(
2014
).
11.
B.
Boukanjime
,
T.
Caraballo
,
M. E.
Fatini
, and
M. E.
Khalifi
, “
Dynamics of a stochastic coronavirus (COVID-19) epidemic model with markovian switching
,”
Chaos Solitons Fractals
141
,
110361
(
2020
).
12.
A.
Din
,
T.
Khan
,
Y.
Li
,
H.
Tahir
,
A.
Khan
, and
W.
Khan
, “
Mathematical analysis of dengue stochastic epidemic model
,”
Results Phys.
20
,
103719
(
2021
).
13.
A.
Alkhazzan
,
J.
Wang
,
Y.
Nie
,
H.
Khan
, and
J.
Alzabut
, “
A stochastic SIRS modeling of transport-related infection with three types of noises
,”
Alexandria Engineering Journal
76
,
557
572
(
2023
).
14.
A.
Gray
,
D.
Greenhalgh
,
X.
Mao
, and
J.
Pan
, “
The SIS epidemic model with Markovian switching
,”
J. Math. Anal. Appl.
394
,
496
516
(
2012
).
15.
Y.
Muroya
,
Y.
Enatsu
, and
T.
Kuniya
, “
Global stability for a multi-group SIRS epidemic model with varying population sizes
,”
Nonlinear Anal. Real World Appl.
14
,
1693
1704
(
2013
).
16.
S.
He
,
Y.
Peng
, and
K.
Sun
, “
SEIR modeling of the COVID-19 and its dynamics
,”
Nonlinear Dyn.
101
,
1667
1680
(
2020
).
17.
X.
Liu
,
Y.
Takeuchi
, and
S.
Iwami
, “
SVIR epidemic models with vaccination strategies
,”
J. Theoret. Biol.
253
,
1
11
(
2008
).
18.
Q.
Ain
,
A.
Khan
,
T.
Abdeljawad
,
J.
Gómez-Aguilar
, and
S.
Riaz
, “
Dynamical study of varicella-zoster virus model in sense of Mittag-Leffler kernel
,”
Int. J. Biomath.
17
,
2350027
(
2023
).
19.
A.
Thirthar
,
H.
Abboubakar
,
A.
Khan
, and
T.
Abdeljawad
, “
Mathematical modeling of the COVID-19 epidemic with fear impact
,”
AIMS Math.
8
,
6447
6465
(
2023
).
20.
K.
Shah
,
A.
Ali
,
S.
Zeb
,
A.
Khan
,
M.
Alqudah
, and
T.
Abdeljawad
, “
Study of fractional order dynamics of nonlinear mathematical model
,”
Alexandria Eng. J.
61
,
11211
11224
(
2022
).
21.
Y.
Wang
,
J.
Cao
,
Z.
Jin
,
H.
Zhang
, and
G.
Sun
, “
Impact of media coverage on epidemic spreading in complex networks
,”
Phys. A
392
,
5824
5835
(
2013
).
22.
X.
Zhou
,
X.
Gao
, and
X.
Shi
, “
Analysis of an SQEIAR stochastic epidemic model with media coverage and asymptomatic infection
,”
Int. J. Biomath.
15
,
1793
5245
(
2022
).
23.
W.
Liu
and
Q.
Zheng
, “
A stochastic SIS epidemic model incorporating media coverage in a two patch setting
,”
Appl. Math. Comput.
262
,
160
168
(
2015
).
24.
X.
Chang
,
M.
Liu
,
Z.
Jin
, and
J.
Wang
, “
Studying on the impact of media coverage on the spread of COVID-19 in Hubei Province, China
,”
Math. Biosci. Eng.
17
,
3147–3159
(
2020
).
25.
A.
Alkhazzan
,
J. G.
Wang
,
Y. F.
Nie
,
H.
Khan
, and
J.
Alzabut
, “
An effective transport-related SVIR stochastic epidemic model with media coverage and Lévy noise
,”
Chaos, Solitons Fractals
175
,
113953
(
2023
).
26.
T.
Caraballo
,
M. EL
Fatini
,
R.
Pettersson
, and
R.
Taki
, “
A stochastic SIRI epidemic model with relapse and media coverage
,”
Discrete Contin. Dyn. Syst. Ser. B
23
,
3483
3501
(
2018
).
27.
X. N.
Liu
,
Y.
Takeuchi
, and
S.
Iwami
, “
SVIR epidemic models with vaccination strategies
,”
J. Theoret. Biol.
253
,
1
11
(
2008
).
28.
P.
Raúl
,
V. D.
Cruz
, and
M.
Pedro
, “
Global stability results in a SVIR epidemic model with immunity loss rate depending on the vaccine-age
,”
Abstr. Appl. Anal.
2015
,
1
8
(
2015
).
29.
X. H.
Zhang
,
D. Q.
Jiang
,
T.
Hayat
, and
B.
Ahmad
, “
Dynamical behavior of a stochastic SVIR epidemic model with vaccination
,”
Phys. A
483
,
94
108
(
2017
).
30.
X. H.
Zhang
and
Q.
Yang
, “
Threshold behavior in a stochastic SVIR model with general incidence rates
,”
Appl. Math. Lett.
121
,
107403
(
2021
).
31.
A.
Alkhazzan
,
J. G.
Wang
,
Y. F.
Nie
, and
K.
Hattaf
, “
A new stochastic split-step theta-nonstandard finite difference method for the developed SVIR epidemic model with temporary immunities and general incidence rates
,”
Vaccines
10
,
1682
(
2022
).
32.
A.
Kumar
,
P. K.
Srivastava
, and
R. P.
Gupta
, “
Nonlinear dynamics of infectious diseases via information-induced vaccination and saturated treatment
,”
Math. Comput. Simulation
157
,
77
99
(
2019
).
33.
C. R.
Cai
,
Z. X.
Wu
, and
J. Y.
Guan
, “
Behavior of susceptible-vaccinated-infected-recovered epidemics with diversity in the infection rate of individuals
,”
Phys. Rev. E
88
,
062805
(
2013
).
34.
X. S.
Cui
,
D. Y.
Xue
, and
F.
Pan
, “
A fractional SVIR-B epidemic model for cholera with imperfect vaccination and saturated treatment
,”
Eur. Phys. J. Plus
137
,
1361
(
2022
).
35.
P. J.
Witbooi
,
G. E.
Muller
, and
G. J. V.
Schalkwyk
, “
Vaccination control in a stochastic SVIR epidemic model
,”
Comput. Math. Methods Med.
2015
,
271654
(
2015
).
36.
T.
Kuniya
, “
Global stability of a multi-group SVIR epidemic model
,”
Nonlinear Anal. Real World Appl.
14
,
1135
1143
(
2013
).
37.
Q.
Liu
,
D.
Jiang
,
N.
Shi
, and
T.
Hayat
, “
Dynamics of a stochastic delayed SIR epidemic model with vaccination and double diseases driven by Lévy jumps
,”
Phys. A
492
,
2010
2018
(
2018
).
38.
X.
Leng
,
T.
Feng
, and
X.
Meng
, “
Stochastic inequalities and applications to dynamics analysis of a novel SIVS epidemic model with jumps
,”
J. Inequalities Appl.
2017
,
138
(
2017
).
39.
X. Z.
Meng
, “
Stability of a novel stochastic epidemic model with double epidemic hypothesis
,”
Appl. Math. Comput.
217
,
506
515
(
2010
).
40.
A.
Alkhazzan
,
J. G.
Wang
,
Y. F.
Nie
,
H.
Khan
, and
J.
Alzabut
, “
A novel SIRS epidemic model for two diseases incorporating treatment functions, media coverage, and three types of noise
,”
Chaos, Solitons Fractals
181
(
114631
),
18
(
2024
).
41.
Z.
Chang
,
X.
Meng
, and
X.
Lu
, “
Analysis of a novel stochastic SIRS epidemic model with two different saturated incidence rates
,”
Phys. A
472
,
103
116
(
2017
).
42.
B.
Boukanjime
,
M.
El-Fatini
,
A.
Laaribi
, and
R.
Taki
, “
Analysis of a deterministic and a stochastic epidemic model with two distinct epidemics hypothesis
,”
Phys. A
534
,
122321
(
2019
).
43.
C.
Ji
and
D.
Jiang
, “
Threshold behaviour of a stochastic SIR model
,”
Appl. Math. Model.
38
,
5067
5079
(
2014
).
44.
C. Y.
Xu
and
X. Y.
Li
, “
The threshold of a stochastic delayed SIRS epidemic model with temporary immunity and vaccination
,”
Chaos, Solitons Fractals
111
,
227
234
(
2018
).
45.
Y. L.
Zhou
and
W. G.
Zhang
, “
Threshold of a stochastic SIR epidemic model with Lévy jumps
,”
Phys. A
446
,
204
216
(
2016
).
46.
X. L.
Zou
and
K.
Wang
, “
Numerical simulations and modeling for stochastic biological systems with jumps
,”
Commun. Nonlinear Sci. Numer. Simul.
19
,
1557
1568
(
2014
).
47.
Y.
Zhu
,
L.
Wang
, and
Z.
Qiu
, “
Dynamics of a stochastic cholera epidemic model with Lévy process
,”
Phys. A
595
,
127069
(
2022
).
48.
J.
Danane
,
K.
Allali
,
Z.
Hammouch
, and
K. S.
Nisar
, “
Mathematical analysis and simulation of a stochastic COVID-19 Lévy jump model with isolation strategy
,”
Results Phys.
23
,
103994
(
2021
).
You do not currently have access to this content.