The Fermi–Pasta–Ulam–Tsingou (FPUT) paradox is the phenomenon whereby a one-dimensional chain of oscillators with nonlinear couplings shows long-lived nonergodic behavior prior to thermalization. The trajectory of the system in phase space, with a long-wavelength initial condition, closely follows that of the Toda model over short times, as both systems seem to relax quickly to a non-thermal, metastable state. Over longer times, resonances in the FPUT spectrum drive the system toward equilibrium, away from the Toda trajectory. Similar resonances are observed in q-breather spectra, suggesting that q-breathers are involved in the route toward thermalization. In this article, we first review previous important results related to the metastable state, solitons, and q-breathers. We then investigate orbit bifurcations of q-breathers and show that they occur due to resonances, where the q-breather frequencies become commensurate as m Ω 1 = Ω k. The resonances appear as peaks in the breather energy spectrum. Furthermore, they give rise to new “composite periodic orbits,” which are nonlinear combinations of multiple q-breathers that exist following orbit bifurcations. We find that such resonances are absent in integrable systems, as a consequence of the (extensive number of) conservation laws associated with integrability.

1.
E.
Fermi
,
J.
Pasta
,
S.
Ulam
, and
M.
Tsingou
, “Studies of the nonlinear problems,” 1955, see https://doi.org/10.2172/4376203.
2.
G.
Benettin
,
A.
Carati
,
L.
Galgani
, and
A.
Giorgilli
, “The Fermi–Pasta–Ulam problem and the metastability perspective,” in The Fermi-Pasta-Ulam Problem: A Status Report (Springer, Berlin, 2008), pp. 151–189.
3.
K. A.
Reiss
and
D. K.
Campbell
, “
The metastable state of Fermi–Pasta–Ulam–Tsingou models
,”
Entropy
25
,
300
(
2023
).
4.
P.
Lorenzoni
and
S.
Paleari
, “
Metastability and dispersive shock waves in the Fermi–Pasta–Ulam system
,”
Physica D
221
,
110
117
(
2006
).
5.
M.
Onorato
,
L.
Vozella
,
D.
Proment
, and
Y. V.
Lvov
, “
Route to thermalization in the Fermi–Pasta–Ulam system
,”
Proc. Natl. Acad. Sci.
112
,
4208
4213
(
2015
).
6.
T.
Penati
and
S.
Flach
, “
Tail resonances of Fermi–Pasta–Ulam q-breathers and their impact on the pathway to equipartition
,”
Chaos
17
,
023102
(
2007
).
7.
J. L.
Tuck
and
M. T.
Menzel
, “
The superperiod of the nonlinear weighted string (FPU) problem
,”
Adv. Math.
9
,
399
407
(
1972
).
8.
F.
Fucito
,
F.
Marchesoni
,
E.
Marinari
,
G.
Parisi
,
L.
Peliti
,
S.
Ruffo
, and
A.
Vulpiani
, “
Approach to equilibrium in a chain of nonlinear oscillators
,”
J. Phys. France
43
,
707
713
(
1982
).
9.
N. J.
Zabusky
and
M. D.
Kruskal
, “
Interaction of ‘solitons’ in a collisionless plasma and the recurrence of initial states
,”
Phys. Rev. Lett.
15
,
240
243
(
1965
).
10.
S. D.
Pace
,
K. A.
Reiss
, and
D. K.
Campbell
, “
The beta Fermi-Pasta-Ulam-Tsingou recurrence problem
,”
Chaos
29
,
113107
(
2019
).
11.
M.
Toda
, “
Vibration of a chain with nonlinear interaction
,”
J. Phys. Soc. Jpn.
22
,
431
436
(
1967
).
12.
M.
Toda
, Theory of Nonlinear Lattices, Springer Series in Solid-State Sciences (Springer, Berlin, 2012).
13.
G.
Benettin
,
H.
Christodoulidi
, and
A.
Ponno
, “
The Fermi-Pasta-Ulam problem and its underlying integrable dynamics
,”
J. Stat. Phys.
152
,
195
212
(
2013
).
14.
B. S.
Shastry
and
A. P.
Young
, “
Dynamics of energy transport in a Toda ring
,”
Phys. Rev. B
82
,
104306
(
2010
).
15.
S.
Flach
,
M. V.
Ivanchenko
, and
O. I.
Kanakov
, “
q-breathers and the Fermi-Pasta-Ulam problem
,”
Phys. Rev. Lett.
95
,
064102
(
2005
).
16.
A.
Lyapunov
, “
Problème général de la stabilité du mouvement
,”
Ann. Fac. Sci. Toulouse Math.
9
,
203
474
(
1907
).
17.
C.
Danieli
,
D. K.
Campbell
, and
S.
Flach
, “
Intermittent many-body dynamics at equilibrium
,”
Phys. Rev. E
95
,
060202
(
2017
).
18.
A.
Vainchtein
, “
Solitary waves in FPU-type lattices
,”
Physica D
434
,
133252
(
2022
).
19.
A.
Hofstrand
, “
Near-integrable dynamics of the Fermi–Pasta–Ulam–Tsingou problem
,”
Phys. Rev. E
109
,
034204
(
2024
).
20.
M. P.
Calvo
and
J. M.
Sanz-Serna
, “
The development of variable-step symplectic integrators, with application to the two-body problem
,”
SIAM J. Sci. Comput.
14
,
936
952
(
1993
).
21.
S. D.
Pace
and
D. K.
Campbell
, “
Behavior and breakdown of higher-order Fermi-Pasta-Ulam-Tsingou recurrences
,”
Chaos
29
,
023132
(
2019
).
22.
T. R.
Taha
and
M. I.
Ablowitz
, “
Analytical and numerical aspects of certain nonlinear evolution equations. III. Numerical, Korteweg-de Vries equation
,”
J. Comput. Phys.
55
,
231
253
(
1984
).
23.
G.
Friesecke
and
J. A. D.
Wattis
, “
Existence theorem for solitary waves on lattices
,”
Commun. Math. Phys.
161
,
391
418
(
1994
).
24.
A.
Wazwaz
, “Chapter 9: The KdV equation,” in Handbook of Differential Equations: Evolutionary Equations, Vol. 4, edited by C. M. Dafermos and M. Pokorny (North-Holland, 2008), pp. 485–568.
25.
J. L.
Marín
and
S.
Aubry
, “
Breathers in nonlinear lattices: Numerical calculation from the anticontinuous limit
,”
Nonlinearity
9
,
1501
(
1996
).
26.
S.
Flach
,
M. V.
Ivanchenko
,
O. I.
Kanakov
, and
K. G.
Mishagin
, “
Periodic orbits, localization in normal mode space, and the Fermi–Pasta–Ulam problem
,”
Am. J. Phys.
76
,
453
459
(
2008
).
27.
S.
Flach
, “Computational studies of discrete breathers,” in Energy Localisation and Transfer (World Scientific, 2004), pp. 1–71.
28.
J.
Pöschel
, “A lecture on the classical kam theorem,” arXiv:0908.2234[math.DS] (2009).
29.
E.
Süli
and
D.
Mayers
,
An Introduction to Numerical Analysis
(
Cambridge University Press
,
2003
).
30.
A.
Ponno
,
H.
Christodoulidi
,
C.
Skokos
, and
S.
Flach
, “
The two-stage dynamics in the Fermi-Pasta-Ulam problem: From regular to diffusive behavior
,”
Chaos
21
,
043127
(
2011
).
31.
T. F.
Fairgrieve
and
A. D.
Jepson
, “
O. K. Floquet multipliers
,”
SIAM J. Numer. Anal.
28
,
1446
1462
(
1991
).
32.
K.
Lust
, “
Improved numerical Floquet multipliers
,”
Int. J. Bifurcation Chaos
11
,
2389
2410
(
2001
).
33.
M.
Onorato
,
Y. V.
Lvov
,
G.
Dematteis
, and
S.
Chibbaro
, “
Wave turbulence and thermalization in one-dimensional chains
,”
Phys. Rep.
1040
,
1
36
(
2023
).
34.
Z.
Zhang
,
J.
Kang
, and
W.
Wen
, “
Behaviors of thermalization for the Fermi–Pasta–Ulam–Tsingou system with small number of particles
,”
Chin. Phys. B
30
,
060505
(
2021
).
35.
B. M.
Brown
,
M. S. P.
Eastham
, and
K. M.
Schmidt
, “Floquet theory,” in Periodic Differential Operators (Springer, Basel, 2013), pp. 1–29.
You do not currently have access to this content.