In this paper, we analyze the large-space and large-time asymptotic properties of the vector rogon-soliton and soliton-like solutions of the n-component nonlinear Schrödinger equation with mixed nonzero and zero boundary conditions. In particular, we find that these solutions have different decay velocities along different directions of the x axis, that is, the solutions exponentially and algebraically decay along the positive and negative directions of the x axis, respectively. Moreover, we study the change of the acceleration of soliton moving with the increase in time or distance along the characteristic line (i.e., soliton moving trajectory). As a result, we find that the product of the acceleration and distance square tends to some constant value as time increases. These results will be useful to better understand the related multi-wave phenomena and to design physical experiments.

1.
A.
Osborne
,
Nonlinear Ocean Waves and the Inverse Scattering Transform
(
Elsevier
,
New York
,
2010
).
2.
C.
Kharif
,
E.
Pelinovsky
, and
A.
Slunyaev
,
Rogue Waves in the Ocean
(
Springer
,
New York
,
2009
).
3.
L.
Draper
, “
Freak ocean waves
,”
Weather
21
,
2
4
(
1966
).
4.
K.
Dysthe
,
H. E.
Krogstad
, and
P.
Müller
, “
Oceanic rogue waves
,”
Annu. Rev. Fluid Mech.
40
,
287
310
(
2008
).
5.
D. R.
Solli
,
C.
Ropers
,
P.
Koonath
, and
B.
Jalali
, “
Optical rogue waves
,”
Nature (London)
450
,
1054
(
2007
).
6.
Y. V.
Bludov
,
V. V.
Konotop
, and
N.
Akhmediev
, “
Matter rogue waves
,”
Phys. Rev. A
80
,
033610
(
2009
).
7.
Z.
Yan
,
V. V.
Konotop
, and
N.
Akhmediev
, “
Three-dimensional rogue waves in nonstationary parabolic potentials
,”
Phys. Rev. E
82
,
036610
(
2010
).
8.
Z.
Yan
, “
Financial rogue waves
,”
Commun. Theor. Phys.
54
,
947
(
2010
).
9.
Z.
Yan
, “
Vector financial rogue waves
,”
Phys. Lett. A
375
,
4274
(
2011
).
10.
M.
Shats
,
H.
Punzmann
, and
H.
Xia
, “
Capillary rogue waves
,”
Phys. Rev. Lett.
104
,
104503
(
2010
).
11.
L.
Stenflo
and
M.
Marklund
, “
Rogue waves in the atmosphere
,”
J. Plasma Phys.
76
,
293
(
2010
).
12.
A. N.
Ganshin
,
V. B.
Efimov
,
G. V.
Kolmakov
,
L. P.
Mezhov-Deglin
, and
P. V.
McClintock
, “
Observation of an inverse energy cascade in developed acoustic turbulence in superfluid helium
,”
Phys. Rev. Lett.
101
,
065303
(
2008
).
13.
S.
Toenger
,
T.
Godin
,
C.
Billet
,
F.
Dias
,
M.
Erkintalo
,
G.
Genty
, and
J. M.
Dudley
, “
Emergent rogue wave structures and statistics in spontaneous modulation instability
,”
Sci. Rep.
5
,
1
(
2015
).
14.
J.
Kasparian
,
P.
Béjot
,
J. P.
Wolf
, and
J. M.
Dudley
, “
Optical rogue wave statistics in laser filamentation
,”
Opt. Express
17
,
12070
(
2009
).
15.
W. M.
Moslem
,
P. K.
Shukla
, and
B.
Eliasson
, “
Surface plasma rogue waves
,”
Europhys. Lett.
96
,
25002
(
2011
).
16.
D.
Benney
and
A. C.
Newell
, “
The propagation of nonlinear wave envelopes
,”
J. Math. Phys.
46
,
133
(
1967
).
17.
L. A.
Ostrovskii
, “
Propagation of wave packets and space-time self-focusing in a nonlinear medium
,”
Sov. Phys. JETP
24
,
797
800
(
1967
).
18.
G. B.
Whitham
,
Linear and Non-linear Wanes
(
Wiley-Interscience
,
New York
,
1974
).
19.
H. C.
Yuen
and
B. M.
Lake
, “
Nonlinear dynamics of deep-water gravity waves
,”
Adv. Appl. Mech.
22
,
67
229
(
1982
).
20.
N.
Akhmediev
,
A.
Ankiewicz
, and
M.
Taki
, “
Waves that appear from nowhere and disappear without a trace
,”
Phys. Lett. A
373
,
675
(
2009
).
21.
N.
Akhmediev
,
A.
Ankiewicz
, and
J. M.
Soto-Crespo
, “
Rogue waves and rational solutions of the nonlinear Schrödinger equation
,”
Phys. Rev. E
80
,
026601
(
2009
).
22.
B.
Kibler
,
J.
Fatome
,
C.
Finot
,
G.
Millot
,
F.
Dias
,
G.
Genty
,
N.
Akhmediev
, and
J. M.
Dudley
, “
The Peregrine soliton in nonlinear fibre optics
,”
Nat. Phys.
6
,
790
(
2010
).
23.
B.
Guo
,
L.
Ling
, and
Q.
Liu
, “
Nonlinear Schrödinger equation: Generalized Darboux transformation and rogue wave solutions
,”
Phys. Rev. E
85
,
026607
(
2012
).
24.
Z.
Yan
, “
Nonautonomous ‘rogons’ in the inhomogeneous nonlinear Schrödinger equation with variable coefficients
,”
Phys. Lett. A
374
,
672
679
(
2010
).
25.
J.
He
,
H.
Zhang
,
L.
Wang
,
K.
Porsezian
, and
A.
Fokas
, “
Generating mechanism for higher-order rogue waves
,”
Phys. Rev. E
87
,
052914
(
2013
).
26.
X. Y.
Wen
,
Y.
Yang
, and
Z.
Yan
, “
Generalized perturbation (n, M)-fold Darboux transformations and multi-rogue-wave structures for the modified self-steepening nonlinear Schrödinger equation
,”
Phys. Rev. E
92
,
012917
(
2015
).
27.
B.
Yang
and
J.-K.
Yang
, “
Universal patterns of rogue waves
,”
Physica D
419
,
132850
(
2021
).
28.
D.
Peregrine
, “
Water waves, nonlinear Schrödinger equations and their solutions
,”
J. Aust. Math. Soc. B, Appl. Math.
25
,
16
(
1983
).
29.
A.
Ankiewicz
,
D. J.
Kedziora
, and
N.
Akhmediev
, “
Rogue wave triplets
,”
Phys. Lett. A
375
,
2782
(
2011
).
30.
D. J.
Kedziora
,
A.
Ankiewicz
, and
N.
Akhmediev
, “
Circular rogue wave clusters
,”
Phys. ReV. E
84
,
056611
(
2011
).
31.
D. J.
Kedziora
,
A.
Ankiewicz
, and
N.
Akhmediev
, “
Triangular rogue wave cascades
,”
Phys. Rev. E
86
,
056602
(
2012
).
32.
D. J.
Kedziora
,
A.
Ankiewicz
, and
N.
Akhmediev
, “
Classifying the hierarchy of nonlinear-Schrödinger-equation rogue-wave solutions
,”
Phys. Rev. E
88
,
013207
(
2013
).
33.
A.
Ankiewicz
and
N.
Akhmediev
, “
Multi-rogue waves and triangular numbers
,”
Rom. Rep. Phys.
69
,
104
(
2017
).
34.
L.
Ling
,
L. C.
Zhao
,
Z. Y.
Yang
et al., “
Generation mechanisms of fundamental rogue wave spatial-temporal structure
,”
Phys. Rev. E
96
,
022211
(
2017
).
35.
L. C.
Zhao
and
J.
Liu
, “
Rogue-wave solutions of a three-component coupled nonlinear Schrödinger equation
,”
Phys. Rev. E
87
,
013201
(
2013
).
36.
L.
Ling
,
B.
Guo
, and
L. C.
Zhao
, “
High-order rogue waves in vector nonlinear Schrödinger equations
,”
Phys. Rev. E
89
,
041201
(
2014
).
37.
L.
Ling
,
L. C.
Zhao
, and
B.
Guo
, “
Darboux transformation and classification of solution for mixed coupled nonlinear Schrödinger equations
,”
Commun. Nonlinear Sci. Numer. Simul.
32
,
285
(
2016
).
38.
L. C.
Zhao
,
B.
Guo
, and
L.
Ling
, “
High-order rogue wave solutions for the coupled nonlinear Schrödinger equations-II
,”
J. Math. Phys.
57
,
043508
(
2016
).
39.
G.
Zhang
,
Z.
Yan
, and
X. Y.
Wen
, “
Three-wave resonant interactions: Multi-dark-dark-dark solitons, breathers, rogue waves, and their interactions and dynamics
,”
Physica D
366
,
27
(
2018
).
40.
G.
Zhang
and
Z.
Yan
, “
Three-component nonlinear Schrödinger equations: Modulational instability, Nth-order vector rational and semi-rational rogue waves, and dynamics
,”
Commun. Nonlinear Sci. Numer. Simul.
62
,
117
(
2018
).
41.
D.
Bilman
and
P. D.
Miller
, “
A robust inverse scattering transform for the focusing nonlinear Schrödinger equation
,”
Comm. Pure Appl. Math.
72
,
1722
(
2019
).
42.
D.
Bilman
and
R.
Buckingham
, “
Large-order asymptotics for multiple-pole solitons of the focusing nonlinear Schrödinger equation
,”
J. Nonlinear Sci.
29
,
2185
(
2019
).
43.
D.
Bilman
,
L.
Ling
, and
P. D.
Miller
, “
Extreme superposition: Rogue waves of infinite order and the Painlevé-III hierarchy
,”
Duke Math. J.
169
,
671
(
2020
).
44.
D.
Bilman
and
T.
Trogdon
, “
On numerical inverse scattering for the Korteweg-de Vries equation with discontinuous step-like data
,”
Nonlinearity
33
,
2211
(
2020
).
45.
D.
Bilman
,
R.
Buckingham
, and
D. S.
Wang
, “
Far-field asymptotics for multiple-pole solitons in the large-order limit
,”
J. Differ. Equ.
297
,
320
(
2021
).
46.
M. J.
Ablowitz
,
B.
Prinari
, and
A.
Trubatch
,
Discrete and Continuous Nonlinear Schrödinger Systems
(
Cambridge University Press
,
Cambridge
,
2004
).
47.
G.
Zhang
,
L.
Ling
,
Z.
Yan
, and
V. V.
Konotop
, “
Parity-time-symmetric rational vector rogue waves of the n-component nonlinear Schrödinger equation
,”
Chaos
31
,
063120
(
2021
).
48.
G.
Zhang
,
L.
Ling
, and
Z.
Yan
, “
Multi-component nonlinear Schrödinger equations with nonzero boundary conditions: Higher-order vector Peregrine solitons and asymptotic estimates
,”
J. Nonlinear Sci.
31
,
81
(
2021
).
49.
W.
Weng
,
G.
Zhang
,
L.
Wang
,
M.
Zhang
, and
Z.
Yan
, “
Rational vector rogue waves for the n-component Hirota equation with non-zero backgrounds
,”
Physica D
427
,
133005
(
2021
).
50.
W.
Weng
,
G.
Zhang
,
M.
Zhang
,
Z.
Zhou
, and
Z.
Yan
, “
Semi-rational vector rogon-soliton solutions and asymptotic analysis for any n-component nonlinear Schrödinger equation with mixed boundary conditions
,”
Physica D
432
,
133150
(
2022
).
You do not currently have access to this content.