Unstable dimension variability is an extreme form of non-hyperbolic behavior that causes a severe shadowing breakdown of chaotic trajectories. This phenomenon can occur in coupled chaotic systems possessing symmetries, leading to an invariant attractor with riddled basins of attraction. We consider the coupling of two Lorenz-like systems, which exhibits chaotic synchronized and anti-synchronized states, with their respective basins of attraction. We demonstrate that these basins are riddled, in the sense that they verify both the mathematical conditions for their existence, as well as the characteristic scaling laws indicating power-law dependence of parameters. Our simulations have shown that a biased random-walk model for the log-distances to the synchronized manifold can accurately predict the scaling exponents near blowout bifurcations in this high-dimensional coupled system. The behavior of the finite-time Lyapunov exponents in directions transversal to the invariant subspace has been used as numerical evidence of unstable dimension variability.

1.
J.
Alexander
,
J. A.
Yorke
,
Z.
You
, and
I.
Kan
,
Int. J. Bifurc. Chaos Appl. Sci. Eng.
02
,
795
813
(
1992
).
2.
S. W.
McDonald
,
C.
Grebogi
,
E.
Ott
, and
J. A.
Yorke
,
Phys. D: Nonlinear Phenom.
17
,
125
153
(
1985
).
3.
J.
Aguirre
,
R. L.
Viana
, and
M. A. F.
Sanjuán
,
Rev. Mod. Phys.
81
,
333
386
(
2009
).
4.
L. M.
Pecora
and
T. L.
Carroll
,
Phys. Rev. Lett.
64
,
821
824
(
1990
).
5.
E.
Ott
,
J. C.
Sommerer
,
J. C.
Alexander
,
I.
Kan
, and
J. A.
Yorke
,
Phys. Rev. Lett.
71
,
4134
4137
(
1993
).
6.
L. M.
Pecora
,
T. L.
Carroll
,
G. A.
Johnson
,
D. J.
Mar
, and
J. F.
Heagy
,
Chaos
7
,
520
543
(
1997
).
7.
E.
Ott
and
J. C.
Sommerer
,
Phys. Lett. A
188
,
39
47
(
1994
).
8.
P.
Ashwin
,
J.
Buescu
, and
I.
Stewart
,
Phys. Lett. A
193
,
126
139
(
1994
).
9.
R. L.
Viana
,
C.
Grebogi
,
S. E. D. S.
Pinto
,
S. R.
Lopes
,
A. M.
Batista
, and
J.
Kurths
,
Phys. Rev. E
68
,
067204
(
2003
).
10.
J. F.
Heagy
,
T. L.
Carroll
, and
L. M.
Pecora
,
Phys. Rev. Lett.
73
,
3528
3531
(
1994
).
11.
E.
Ott
,
J.
Alexander
,
I.
Kan
,
J.
Sommerer
, and
J.
Yorke
,
Phys. D: Nonlinear Phenom.
76
,
384
(
1994
).
12.
A.
Elwakil
,
S.
Ozoguz
, and
M.
Kennedy
,
IEEE Trans. Circuits Syst. I Regul. Pap.
49
,
527
(
2002
).
13.
S.
Camargo
,
R. L.
Viana
, and
C.
Anteneodo
,
Phys. Rev. E
85
,
036207
(
2012
).
14.
E. N.
Lorenz
,
J. Atmos. Sci.
20
,
130
141
(
1963
).
15.
A.
Elwakil
,
S.
Ozoguz
, and
M.
Kennedy
,
Int. J. Bifurc. Chaos Appl. Sci. Eng.
13
,
3093
(
2003
).
16.
L.
Chua
,
M.
Komuro
, and
T.
Matsumoto
,
IEEE Trans. Circuits Syst.
33
,
1072
1118
(
1986
).
17.
S.
Ozoguz
,
A.
Elwakil
, and
M.
Kennedy
,
Int. J. Bifurc. Chaos Appl. Sci. Eng.
12
,
1627
(
2002
).
18.
G.
Benettin
,
L.
Galgani
,
A.
Giorgilli
, and
J.-M.
Strelcyn
,
Meccanica
15
,
9
20
(
1980
).
19.
G.
Benettin
,
L.
Galgani
, and
J.-M.
Strelcyn
,
Phys. Rev. A
14
,
2338
2345
(
1976
).
20.
R. F.
Pereira
,
S.
Camargo
,
S. E.
de S. Pinto
,
S. R.
Lopes
, and
R. L.
Viana
,
Phys. Rev. E
78
,
056214
(
2008
).
21.
J. C.
Sommerer
and
E.
Ott
,
Nature
365
,
138
140
(
1993
).
22.
Y.-C.
Lai
,
C.
Grebogi
,
J. A.
Yorke
, and
S. C.
Venkataramani
,
Phys. Rev. Lett.
77
,
55
58
(
1996
).
23.
R. L.
Viana
,
S. E.
de S. Pinto
,
J. R. R.
Barbosa
, and
C.
Grebogi
,
Int. J. Bifurc. Chaos Appl. Sci. Eng.
13
,
3235
3253
(
2003
).
24.
Y.
Saiki
,
Nonlinear Process. Geophys.
14
,
615
(
2007
).
25.
C.
Sparrow
,
The Lorenz Equations: Bifurcations, Chaos, and Strange Attractors
(
Springer
,
New York
,
1982
).
26.
D.
Viswanath
,
Nonlinearity
16
,
1035
1056
(
2003
).
27.
C.
Grebogi
,
S. W.
McDonald
,
E.
Ott
, and
J. A.
Yorke
,
Phys. Lett. A
110
,
1
(
1985
).
28.
C.
Grebogi
,
S. W.
McDonald
,
E.
Ott
, and
J. A.
Yorke
,
Phys. Lett. A
99
,
415
418
(
1983
).
29.
C.
Grebogi
,
E.
Kostelich
,
E.
Ott
, and
J. A.
Yorke
,
Phys. D: Nonlinear Phenom.
25
,
347
360
(
1987
).
30.
J. C.
Vallejo
and
M. A. F.
Sanjuan
,
Predictability of Chaotic Dynamics: A Finite-Time Lyapunov Exponents Approach
(
Springer International Publishing
,
2019
).
31.
E.
Kostelich
,
I.
Kan
,
C.
Grebogi
,
E.
Ott
, and
J.
Yorke
,
Phys. D: Nonlinear Phenom.
109
,
81
(
1997
).
32.
J.
Guckenheimer
and
P.
Holmes
, Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, Applied Mathematical Sciences (Springer, New York, 2013).
33.
C.
Grebogi
,
L.
Poon
,
T.
Sauer
,
J. A.
Yorke
, and
D.
Auerbach
, “Shadowability of chaotic dynamical systems,” in Handbook of Dynamical Systems (Elsevier, 2002), pp. 313–344.
34.
35.
J. A. C.
Gallas
, in Recent Trends in Chaotic, Nonlinear and Complex Dynamics, edited by J. Awrejcewicz, R. Shanmuganathan, and M. Ragulskis (World Scientific, 2021), pp. 275–298.
36.
C.
Grebogi
,
E.
Ott
, and
J. A.
Yorke
,
Phys. Rev. Lett.
57
,
1284
1287
(
1986
).
37.
T.
Sauer
,
C.
Grebogi
, and
J. A.
Yorke
,
Phys. Rev. Lett.
79
,
59
62
(
1997
).
38.
R.
Abraham
and
S.
Smale
, in Proceedings of Symposia in Pure Mathematics (AMS, 1970), Vol. 14, p. 5.
39.
F. J.
Romeiras
,
C.
Grebogi
,
E.
Ott
, and
W.
Dayawansa
,
Phys. D: Nonlinear Phenom.
58
,
165
192
(
1992
).
40.
G. T.
Kubo
,
R. L.
Viana
,
S. R.
Lopes
, and
C.
Grebogi
,
Phys. Lett. A
372
,
5569
5574
(
2008
).
41.
Y.
Saiki
,
M. A. F.
Sanjuán
, and
J. A.
Yorke
,
Chaos
28
,
103110
(
2018
).
42.
E.
Barreto
and
P.
So
,
Phys. Rev. Lett.
85
,
2490
2493
(
2000
).
43.
Y.-C.
Lai
,
D.
Lerner
,
K.
Williams
, and
C.
Grebogi
,
Phys. Rev. E
60
,
5445
5454
(
1999
).
44.
R. L.
Viana
and
C.
Grebogi
,
Phys. Rev. E
62
,
462
468
(
2000
).
45.
R. L.
Viana
,
S. E. D. S.
Pinto
, and
C.
Grebogi
,
Phys. Rev. E
66
,
046213
(
2002
).
46.
S.
Dawson
,
C.
Grebogi
,
T.
Sauer
, and
J. A.
Yorke
,
Phys. Rev. Lett.
73
,
1927
1930
(
1994
).
You do not currently have access to this content.