Link prediction has a wide range of applications in the study of complex networks, and the current research on link prediction based on single-layer networks has achieved fruitful results, while link prediction methods for multilayer networks have to be further developed. Existing research on link prediction for multilayer networks mainly focuses on multiplexed networks with homogeneous nodes and heterogeneous edges, while there are relatively few studies on general multilayer networks with heterogeneous nodes and edges. In this context, this paper proposes a method for heterogeneous multilayer networks based on motifs for link prediction. The method considers not only the effect of heterogeneity of edges on network links but also the effect of heterogeneous and homogeneous nodes on the existence of links between nodes. In addition, we use the role function of nodes to measure the contribution of nodes to form the motifs with links in different layers of the network, thus enabling the prediction of intra- and inter-layer links on heterogeneous multilayer networks. Finally, we apply the method to several empirical networks and find that our method has better link prediction performance than several other link prediction methods on multilayer networks.

1.
H.
Li
,
H.
Ren
,
H.
An
,
N.
Ma
, and
L.
Yan
, “
Multiplex cross-shareholding relations in the global oil & gas industry chain based on multilayer network modeling
,”
Energy Econ.
95
,
105130
(
2021
).
2.
A.
Tejedor
,
A.
Longjas
,
E.
Foufoula-Georgiou
,
T. T.
Georgiou
, and
Y.
Moreno
, “
Diffusion dynamics and optimal coupling in multiplex networks with directed layers
,”
Phys. Rev. X
8
,
031071
(
2018
).
3.
E.
Kušen
and
M.
Strembeck
, “On message exchange motifs emerging during human/bot interactions in multilayer networks: The case of two riot events,” in 2018 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM) (IEEE, 2018), pp. 1274–1279.
4.
Z. K.
Gao
,
S. S.
Zhang
,
W. D.
Dang
,
S.
Li
, and
Q.
Cai
, “
Multilayer network from multivariate time series for characterizing nonlinear flow behavior
,”
Int. J. Bifurcation Chaos
27
,
1750059
(
2017
).
5.
S.
Feng
,
H.
Li
,
Y.
Qi
,
J.
Jia
,
G.
Zhou
,
Q.
Guan
, and
X.
Liu
, “
Detecting the interactions among firms in distinct links of the industry chain by motif
,”
J. Stat. Mech.: Theory Exp.
2019
,
123403
(
2019
).
6.
L.
Huang
,
C.-D.
Wang
, and
H.-Y.
Chao
, “
Hm-modularity: A harmonic motif modularity approach for multi-layer network community detection
,”
IEEE Trans. Knowl. Data Eng.
33
,
2520
2533
(
2021
).
7.
M.
Kivelä
and
M. A.
Porter
, “
Isomorphisms in multilayer networks
,”
IEEE Trans. Network Sci. Eng.
5
,
198
211
(
2018
).
8.
H.
Luo
,
L.
Li
,
Y.
Zhang
,
S.
Fang
, and
X.
Chen
, “
Link prediction in multiplex networks using a novel multiple-attribute decision-making approach
,”
Knowl.-Based Syst.
219
,
106904
(
2021
).
9.
M.
Gao
,
P.
Jiao
,
R.
Lu
,
H.
Wu
,
Y.
Wang
, and
Z.
Zhao
, “
Inductive link prediction via interactive learning across relations in multiplex networks
,”
IEEE Trans. Comput. Social Syst.
11
,
3118
3130
(
2024
).
10.
L.
Zhu
,
D.
Guo
,
J.
Yin
,
G. V.
Steeg
, and
A.
Galstyan
, “
Scalable temporal latent space inference for link prediction in dynamic social networks
,”
IEEE Trans. Knowl. Data Eng.
28
,
2765
2777
(
2016
).
11.
H.
Luo
,
L.
Li
,
H.
Dong
, and
X.
Chen
, “
Link prediction in multiplex networks: An evidence theory method
,”
Knowl.-Based Syst.
257
,
109932
(
2022
).
12.
S.
Mishra
,
S. S.
Singh
,
A.
Kumar
, and
B.
Biswas
, “
Hoplp-mul: Link prediction in multiplex networks based on higher order paths and layer fusion
,”
Appl. Intell.
53
,
3415
3443
(
2023
).
13.
H.
Shakibian
,
N. M.
Charkari
, and
S.
Jalili
, “
A multilayered approach for link prediction in heterogeneous complex networks
,”
J. Comput. Sci.
17
,
73
82
(
2016
).
14.
R.
Yang
,
C.
Yang
,
X.
Peng
, and
A.
Rezaeipanah
, “
A novel similarity measure of link prediction in multi-layer social networks based on reliable paths
,”
Concurrency Comput. Pract. Exper.
34
,
e6829
(
2022
).
15.
E.
Nasiri
,
K.
Berahmand
,
Z.
Samei
, and
Y.
Li
, “
Impact of centrality measures on the common neighbors in link prediction for multiplex networks
,”
Big Data
10
,
138
150
(
2022
).
16.
E.
Nasiri
,
K.
Berahmand
, and
Y.
Li
, “
A new link prediction in multiplex networks using topologically biased random walks
,”
Chaos Soliton. Fract.
151
,
111230
(
2021
).
17.
L.
Backstrom
and
J.
Leskovec
, “Supervised random walks: Predicting and recommending links in social networks,” in Proceedings of the 4th ACM International Conference on Web Search and Data Mining, WSDM 2011 (Association for Computing Machinery, 2011), pp. 635–644.
18.
D.
Mohdeb
,
A.
Boubetra
, and
M.
Charikhi
, “Wmplp: A model for link prediction in heterogeneous social networks,” in 2014 4th International Symposium ISKO-Maghreb: Concepts and Tools for Knowledge Management (ISKO-Maghreb) (IEEE, 2014), pp. 1–4.
19.
Y.
Liu
,
T.
Li
, and
X.
Xu
, “
Link prediction by multiple motifs in directed networks
,”
IEEE Access
8
,
174
183
(
2020
).
20.
S.-Y.
Liu
,
J.
Xiao
, and
X.-K.
Xu
, “
Link prediction in signed social networks: From status theory to motif families
,”
IEEE Trans. Network Sci. Eng.
7
,
1724
1735
(
2020
).
21.
R.
Milo
,
S.
Shen-Orr
,
S.
Itzkovitz
,
N.
Kashtan
,
D.
Chklovskii
, and
U.
Alon
, “
Network motifs: Simple building blocks of complex networks
,”
Science
298
,
824
827
(
2002
).
22.
D.
Jain
and
R.
Patgiri
, “Network motifs: A survey” (Springer Singapore, 2019), pp. 80–91.
23.
L.
Kovanen
,
K.
Kaski
,
J.
Kertész
, and
J.
Saramäki
, “
Temporal motifs reveal homophily, gender-specific patterns, and group talk in call sequences
,”
Proc. Natl. Acad. Sci.
110
,
18070
18075
(
2013
).
24.
L.
and
T.
Zhou
, “
Link prediction in complex networks: A survey
,”
Physica A
390
,
1150
1170
(
2011
).
25.
A. L.
Traud
,
P. J.
Mucha
, and
M. A.
Porter
, “
Social structure of facebook networks
,”
Physica A
391
,
4165
4180
(
2012
).
26.
T.
Chen
and
C.
Guestrin
, “Xgboost: A scalable tree boosting system,” in Proceedings of the 22Nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (Association for Computing Machinery, 2016), pp. 785–794.
27.
R.
Shwartz-Ziv
and
A.
Armon
, “
Tabular data: Deep learning is not all you need
,”
Inf. Fusion
81
,
84
90
(
2022
).
28.
Q.
Li
,
Q.
Chen
,
J.
Wu
,
Y.
Qiu
,
C.
Zhang
,
Y.
Huang
,
J.
Guo
, and
B.
Yang
, “
Xgboost-based intelligent decision making of HVDC system with knowledge graph
,”
Energies
16
,
2405
(
2023
).
29.
W.
Liu
and
L.
, “
Link prediction based on local random walk
,”
Europhys. Lett.
89
,
58007
(
2010
).
30.
F.
Fouss
,
A.
Pirotte
,
J.-M.
Renders
, and
M.
Saerens
, “
Random-walk computation of similarities between nodes of a graph with application to collaborative recommendation
,”
IEEE Trans. Knowl. Data Eng.
19
,
355
369
(
2007
).
31.
L.
,
C.-H.
Jin
, and
T.
Zhou
, “
Similarity index based on local paths for link prediction of complex networks
,”
Phys. Rev. E
80
,
046122
(
2009
).
32.
D.
Klein
and
M.
Randic
, “
Resistance distance
,”
J. Math. Chem.
12
,
81
95
(
1993
).
You do not currently have access to this content.