Turing instability in complex networks is known to be dependent on the degree distribution, and the necessary conditions for Turing instability have been shown in the literature to have an explicit dependence on the eigenvalues of the Laplacian matrix, which, in turn, depends on the network topology. This study reveals that these conditions are not sufficient, and another global network measure—the nodal clustering—also plays a crucial role. Analytical and numerical results are presented to explain the effects of clustering for several network topologies, ranging from the S 1 / H 2 hyperbolic geometric networks that enable modeling the naturally occurring clustering in real-world networks, as well as the random and scale-free networks, which are obtained as limiting cases of the S 1 / H 2 model. Analysis of the Laplacian eigenvector localization properties in these networks is shown to reveal distinct signatures that enable identifying the so called Turing patterns even in complex networks.

1.
A. M.
Turing
, “
The chemical basis of morphogenesis
,”
Phil. Trans. R. Soc. London B
237
,
37
72
(
1952
).
2.
M. C.
Cross
and
P. C.
Hohenberg
, “
Pattern formation outside of equilibrium
,”
Rev. Mod. Phys.
65
(
3
),
851
(
1993
).
3.
M.
Cross
and
H.
Greenside
,
Pattern Formation and Dynamics in Nonequilibrium Systems
(
Cambridge University Press
,
2009
).
4.
A.
Gierer
and
H.
Meinhardt
, “
A theory of biological pattern formation
,”
Kybernetik
12
,
30
39
(
1972
).
5.
A.-J.
Koch
and
H.
Meinhardt
, “
Biological pattern formation: From basic mechanisms to complex structures
,”
Rev. Mod. Phys.
66
(
4
),
1481
(
1994
).
6.
S.
Kondo
and
T.
Miura
, “
Reaction-diffusion model as a framework for understanding biological pattern formation
,”
Science
329
(
5999
),
1616
1620
(
2010
).
7.
H.
Meinhardt
and
H.
Meinhardt
,
Models of Biological Pattern Formation
(
Academic Press
,
London
,
1982
), Vol. 6.
8.
D.
Walgraef
,
Spatio-temporal Pattern Formation: With Examples From Physics, Chemistry, and Materials Science
(
Springer Science & Business Media
,
2012
).
9.
A. M.
Zhabotinsky
,
M.
Dolnik
, and
I. R.
Epstein
, “
Pattern formation arising from wave instability in a simple reaction-diffusion system
,”
J. Chem. Phys.
103
(
23
),
10306
10314
(
1995
).
10.
I.
Prigogine
and
R.
Lefever
, “
Symmetry breaking instabilities in dissipative systems. II
,”
J. Chem. Phys.
48
(
4
),
1695
1700
(
1968
).
11.
P.
Ji
,
J.
Ye
,
Y.
Mu
,
W.
Lin
,
Y.
Tian
,
C.
Hens
,
M.
Perc
,
Y.
Tang
,
J.
Sun
, and
J.
Kurths
, “
Signal propagation in complex networks
,”
Phys. Rep.
1017
,
1
96
(
2023
).
12.
H. G.
Othmer
and
L.
Scriven
, “
Instability and dynamic pattern in cellular networks
,”
J. Theor. Biol.
32
(
3
),
507
537
(
1971
).
13.
W.
Horsthemke
,
K.
Lam
, and
P. K.
Moore
, “
Network topology and Turing instabilities in small arrays of diffusively coupled reactors
,”
Phys. Lett. A
328
(
6
),
444
451
(
2004
).
14.
P. K.
Moore
and
W.
Horsthemke
, “
Localized patterns in homogeneous networks of diffusively coupled reactors
,”
Physica D
206
(
1–2
),
121
144
(
2005
).
15.
M.
Asllani
,
J. D.
Challenger
,
F. S.
Pavone
,
L.
Sacconi
, and
D.
Fanelli
, “
The theory of pattern formation on directed networks
,”
Nat. Commun.
5
(
1
),
4517
(
2014
).
16.
R.
Muolo
,
M.
Asllani
,
D.
Fanelli
,
P. K.
Maini
, and
T.
Carletti
, “
Patterns of non-normality in networked systems
,”
J. Theor. Biol.
480
,
81
91
(
2019
).
17.
J.
Petit
,
B.
Lauwens
,
D.
Fanelli
, and
T.
Carletti
, “
Theory of Turing patterns on time varying networks
,”
Phys. Rev. Lett.
119
(
14
),
148301
(
2017
).
18.
R. A.
Van Gorder
, “
A theory of pattern formation for reaction–diffusion systems on temporal networks
,”
Proc. R. Soc. A
477
(
2247
),
20200753
(
2021
).
19.
L.
Gallo
,
R.
Muolo
,
L. V.
Gambuzza
,
V.
Latora
,
M.
Frasca
, and
T.
Carletti
, “
Synchronization induced by directed higher-order interactions
,”
Commun. Phys.
5
(
1
),
263
(
2022
).
20.
S.
Gao
,
L.
Chang
,
M.
Perc
, and
Z.
Wang
, “
Turing patterns in simplicial complexes
,”
Phys. Rev. E
107
(
1
),
014216
(
2023
).
21.
M.
Asllani
,
D. M.
Busiello
,
T.
Carletti
,
D.
Fanelli
, and
G.
Planchon
, “
Turing patterns in multiplex networks
,”
Phys. Rev. E
90
(
4
),
042814
(
2014
).
22.
M.
Asllani
,
D. M.
Busiello
,
T.
Carletti
,
D.
Fanelli
, and
G.
Planchon
, “
Turing instabilities on Cartesian product networks
,”
Sci. Rep.
5
(
1
),
12927
(
2015
).
23.
N. E.
Kouvaris
,
S.
Hata
, and
A. D.
Guilera
, “
Pattern formation in multiplex networks
,”
Sci. Rep.
5
(
1
),
10840
(
2015
).
24.
D. M.
Busiello
,
T.
Carletti
, and
D.
Fanelli
, “
Homogeneous-per-layer patterns in multiplex networks
,”
Europhys. Lett.
121
(
4
),
48006
(
2018
).
25.
B. A.
Siebert
,
C. L.
Hall
,
J. P.
Gleeson
, and
M.
Asllani
, “
Role of modularity in self-organization dynamics in biological networks
,”
Phys. Rev. E
102
(
5
),
052306
(
2020
).
26.
S.
Gao
,
L.
Chang
,
X.
Wang
,
C.
Liu
,
X.
Li
, and
Z.
Wang
, “
Cross-diffusion on multiplex networks
,”
New J. Phys.
22
(
5
),
053047
(
2020
).
27.
C.
Liu
,
S.
Gao
,
M.
Song
,
Y.
Bai
,
L.
Chang
, and
Z.
Wang
, “
Optimal control of the reaction–diffusion process on directed networks
,”
Chaos
32
(
6
),
063115
(
2022
).
28.
S.
Gao
,
L.
Chang
,
I.
Romić
,
Z.
Wang
,
M.
Jusup
, and
P.
Holme
, “
Optimal control of networked reaction–diffusion systems
,”
J. R. Soc. Interface
19
(
188
),
20210739
(
2022
).
29.
J.
van der Kolk
,
G.
García-Pérez
,
N. E.
Kouvaris
,
M.
Á. Serrano
, and
M.
Boguñá
, “
Emergence of geometric Turing patterns in complex networks
,”
Phys. Rev. X
13
(
2
),
021038
(
2023
).
30.
P.
Van Mieghem
,
Graph Spectra for Complex Networks
(
Cambridge University Press
,
2023
).
31.
H.
Nakao
and
A. S.
Mikhailov
, “
Turing patterns in network-organized activator–inhibitor systems
,”
Nat. Phys.
6
(
7
),
544
550
(
2010
).
32.
M.
Asllani
,
T.
Carletti
, and
D.
Fanelli
, “
Tune the topology to create or destroy patterns
,”
Eur. Phys. J. B
89
,
1
10
(
2016
).
33.
G.
Cencetti
,
F.
Battiston
,
T.
Carletti
, and
D.
Fanelli
, “
Generalized patterns from local and non local reactions
,”
Chaos Soliton. Fract.
134
,
109707
(
2020
).
34.
M.-T.
Hütt
,
D.
Armbruster
, and
A.
Lesne
, “
Predictable topological sensitivity of Turing patterns on graphs
,”
Phys. Rev. E
105
(
1
),
014304
(
2022
).
35.
M.
Boguna
,
I.
Bonamassa
,
M.
De Domenico
,
S.
Havlin
,
D.
Krioukov
, and
M.
Á. Serrano
, “
Network geometry
,”
Nat. Rev. Phys.
3
(
2
),
114
135
(
2021
).
36.
D.
Krioukov
,
F.
Papadopoulos
,
M.
Kitsak
,
A.
Vahdat
, and
M.
Boguná
, “
Hyperbolic geometry of complex networks
,”
Phys. Rev. E
82
(
3
),
036106
(
2010
).
37.
M.
Á. Serrano
,
D.
Krioukov
, and
M.
Boguná
, “
Self-similarity of complex networks and hidden metric spaces
,”
Phys. Rev. Lett.
100
(
7
),
078701
(
2008
).
38.
E.
Candellero
and
N.
Fountoulakis
, “
Clustering and the hyperbolic geometry of complex networks
,”
Internet Math.
12
(
1–2
),
2
53
(
2016
).
39.
N.
Fountoulakis
,
P.
Van Der Hoorn
,
T.
Müller
, and
M.
Schepers
, “Clustering in a hyperbolic model of complex networks,”
Electron. J. Probab.
26
, 1–132 (2021).
40.
M. A.
Abdullah
,
M.
Bode
, and
N.
Fountoulakis
, “Typical distances in a geometric model for complex networks,” arXiv:1506.07811 (2015).
41.
M.
Á. Serrano
and
M.
Boguñá
,
The Shortest Path to Network Geometry: A Practical Guide to Basic Models and Applications
(
Cambridge University Press
,
2021
).
42.
G.
García Pérez
, “A geometric approach to the structure of complex networks” (2018), see http://hdl.handle.net/2445/127574
43.
O.
Artime
,
M.
Grassia
,
M.
De Domenico
,
J. P.
Gleeson
,
H. A.
Makse
,
G.
Mangioni
,
M.
Perc
, and
F.
Radicchi
, “
Robustness and resilience of complex networks
,”
Nat. Rev. Phys.
6
(
2
),
114
131
(
2024
).
44.
P.
Erdõs
and
A.
Rényi
, “
On random graphs
,”
Publ. Math
6
(
3–4
),
290–297
(
1959
).
45.
A.-L.
Barabási
and
R.
Albert
, “
Emergence of scaling in random networks
,”
Science
286
(
5439
),
509
512
(
1999
).
46.
L.
Guo
,
X.
Shi
, and
J.
Cao
, “
Turing patterns of Gierer–Meinhardt model on complex networks
,”
Nonlinear Dyn.
105
,
899
909
(
2021
).
47.
C.
Liu
,
L.
Chang
,
Y.
Huang
, and
Z.
Wang
, “
Turing patterns in a predator–prey model on complex networks
,”
Nonlinear Dyn.
99
,
3313
3322
(
2020
).
48.
R.
Rossi
and
N.
Ahmed
, “The network data repository with interactive graph analytics and visualization,”
Proceedings of the AAAI Conference on Artificial Intelligence
(AAAI, 2015), Vol. 29(1).
49.
X.
Luo
,
G.
Sun
,
R.
He
,
Z.
Jin
,
J. K. K.
Asamoah
,
Y.
Xue
, and
L.
Chang
, “
The relationship between clustering and networked Turing patterns
,”
Chaos
34
(
7
),
073114
(
2024
).
50.
J. P.
Gleeson
, “
Bond percolation on a class of clustered random networks
,”
Phys. Rev. E
80
(
3
),
036107
(
2009
).
51.
V.
Castets
,
E.
Dulos
,
J.
Boissonade
, and
P.
De Kepper
, “
Experimental evidence of a sustained standing Turing-type nonequilibrium chemical pattern
,”
Phys. Rev. Lett.
64
(
24
),
2953
(
1990
).
52.
Q.
Ouyang
and
H. L.
Swinney
, “
Transition from a uniform state to hexagonal and striped Turing patterns
,”
Nature
352
(
6336
),
610
612
(
1991
).
53.
M. P.
Harris
,
S.
Williamson
,
J. F.
Fallon
,
H.
Meinhardt
, and
R. O.
Prum
, “
Molecular evidence for an activator–inhibitor mechanism in development of embryonic feather branching
,”
Proc. Natl. Acad. Sci. U.S.A.
102
(
33
),
11734
11739
(
2005
).
54.
L. A.
Segel
and
S. A.
Levin
, “
Application of nonlinear stability theory to the study of the effects of diffusion on predator-prey interactions
,”
AIP Conf. Proc.
7275
,
123
152
(
1976
).
55.
M.
Mimura
and
J.
Murray
, “
On a diffusive prey-predator model which exhibits patchiness
,”
J. Theor. Biol.
75
(
3
),
249
262
(
1978
).
56.
J. L.
Maron
and
S.
Harrison
, “
Spatial pattern formation in an insect host-parasitoid system
,”
Science
278
(
5343
),
1619
1621
(
1997
).
57.
J. P.
Gibert
and
J. D.
Yeakel
, “
Laplacian matrices and Turing bifurcations: Revisiting Levin 1974 and the consequences of spatial structure and movement for ecological dynamics
,”
Theor. Ecol.
12
(
3
),
265
281
(
2019
).
58.
D. J.
Watts
and
S. H.
Strogatz
, “
Collective dynamics of ‘small-world’ networks
,”
Nature
393
(
6684
),
440
442
(
1998
).
59.
P. N.
McGraw
and
M.
Menzinger
, “
Analysis of nonlinear synchronization dynamics of oscillator networks by Laplacian spectral methods
,”
Phys. Rev. E
75
(
2
),
027104
(
2007
).
60.
M.
Newman
,
Networks
(
Oxford University Press
,
2018
).
61.
S.
Bansal
,
S.
Khandelwal
, and
L. A.
Meyers
, “
Exploring biological network structure with clustered random networks
,”
BMC Bioinf.
10
,
1
15
(
2009
).
62.
G.
Pólya
and
G.
Szegö
,
Isoperimetric Inequalities in Mathematical Physics
(
Princeton University Press
,
1951
), Vol. 27.
63.
J.
Cheeger
, “
A lower bound for the smallest eigenvalue of the Laplacian
,”
Probl. Anal.
625
(
195–199
),
110
(
1970
).
64.
P. N.
McGraw
and
M.
Menzinger
, “
Laplacian spectra as a diagnostic tool for network structure and dynamics
,”
Phys. Rev. E
77
(
3
),
031102
(
2008
).
65.
B.
Mohar
,
Y.
Alavi
,
G.
Chartrand
, and
O.
Oellermann
, “
The Laplacian spectrum of graphs
,”
Graph Theory Combin. Appl.
2
(
871–898
),
12
(
1991
).
66.
F.
Rellich
,
Perturbation Theory of Eigenvalue Problems
(
CRC Press
,
1969
).
67.
R.-C.
Li
, “Matrix perturbation theory,” in Handbook of Linear Algebra (Chapman and Hall, 2006), pp. 15–21.
68.
L.
Hogben
,
Handbook of Linear Algebra
(
CRC Press
,
2006
).
69.
F. L.
Bauer
and
C. T.
Fike
, “
Norms and exclusion theorems
,”
Numer. Math.
2
(
1
),
137
141
(
1960
).
70.
G.
Strang
, Linear Algebra and Its Applications (Brooks/Cole/Cengage, 2006).
71.
D.
Gale
, “A theorem on flows in networks,” in Classic Papers in Combinatorics (Springer, 1956), pp. 259–268.
72.
S.
Maslov
and
K.
Sneppen
, “
Specificity and stability in topology of protein networks
,”
Science
296
(
5569
),
910
913
(
2002
).
73.
S.
Mimar
,
M. M.
Juane
,
J.
Park
,
A. P.
Munuzuri
, and
G.
Ghoshal
, “
Turing patterns mediated by network topology in homogeneous active systems
,”
Phys. Rev. E
99
(
6
),
062303
(
2019
).
74.
G.
García-Pérez
,
A.
Allard
,
M.
Á. Serrano
, and
M.
Boguñá
, “
Mercator: Uncovering faithful hyperbolic embeddings of complex networks
,”
New J. Phys.
21
(
12
),
123033
(
2019
).
75.
J.
Kunegis
, “KONECT: The Koblenz network collection,”
Proceedings of the 22nd International Conference on World Wide Web (WWW ’13 Companion)
(Association for Computing Machinery, New York, NY, USA, 2013), pp. 1343–1350.
76.
Y.-Y.
Ahn
,
H.
Jeong
, and
B. J.
Kim
, “
Wiring cost in the organization of a biological neuronal network
,”
Physica A
367
,
531
537
(
2006
).
77.
J. S.
Kim
and
M.
Kaiser
, “
From Caenorhabditis elegans to the human connectome: A specific modular organization increases metabolic, functional and developmental efficiency
,”
Phil. Trans. R. Soc. B
369
(
1653
),
20130529
(
2014
).
78.
P.
Hagmann
,
L.
Cammoun
,
X.
Gigandet
,
R.
Meuli
,
C. J.
Honey
,
V. J.
Wedeen
, and
O.
Sporns
, “
Mapping the structural core of human cerebral cortex
,”
PLoS Biol.
6
(
7
),
e159
(
2008
).
79.
J.
van der Kolk
,
M.
Á. Serrano
, and
M.
Boguñá
, “
An anomalous topological phase transition in spatial random graphs
,”
Commun. Phys.
5
(
1
),
245
(
2022
).
You do not currently have access to this content.