The mixing groups gathered in the enclosed space form a complex contact network due to face-to-face interaction, which affects the status and role of different groups in social communication. The intricacies of epidemic spreading in mixing groups are intrinsically complicated. Multiple interactions and transmission add to the difficulties of understanding and forecasting the spread of infectious diseases in mixing groups. Despite the critical relevance of face-to-face interactions in real-world situations, there is a significant lack of comprehensive study addressing the unique issues of mixed groups, particularly those with complex face-to-face interactions. We introduce a novel model employing an agent-based approach to elucidate the nuances of face-to-face interactions within mixing groups. In this paper, we apply a susceptible-infected-susceptible process to mixing groups and integrate a temporal network within a specified time window to distinguish between individual movement patterns and epidemic spreading dynamics. Our findings highlight the significant impact of both the relative size of mixing groups and the groups’ mixing patterns on the trajectory of disease spread within the mixing groups. When group sizes differ significantly, high inter-group contact preference limits disease spread. However, if the minority reduces their intra-group preferences while the majority maintains high inter-group contact, disease spread increases. In balanced group sizes, high intra-group contact preferences can limit transmission, but asymmetrically reducing any group’s intra-group preference can lead to increased spread.

1.
M.
Génois
,
C. L.
Vestergaard
,
J.
Fournet
,
A.
Panisson
,
I.
Bonmarin
, and
A.
Barrat
, “
Data on face-to-face contacts in an office building suggest a low-cost vaccination strategy based on community linkers
,”
Netw. Sci.
3
,
326
347
(
2015
).
2.
J.
Fournet
and
A.
Barrat
, “
Contact patterns among high school students
,”
PLoS One
9
,
e107878
(
2014
).
3.
L.
Isella
,
M.
Romano
,
A.
Barrat
,
C.
Cattuto
,
V.
Colizza
,
W. V. D.
Broeck
,
F.
Gesualdo
,
E.
Pandolfi
,
L.
Ravà
,
C.
Rizzo
, and
A. E.
Tozzi
, “
Close encounters in a pediatric ward: Measuring face-to-face proximity and mixing patterns with wearable sensors
,”
PLoS One
6
,
e17144
(
2011
).
4.
K.
Leung
,
M.
Jit
,
E. H. Y.
Lau
, and
J. T.
Wu
, “
Social contact patterns relevant to the spread of respiratory infectious diseases in Hong Kong
,”
Sci. Rep.
7
,
7974
(
2017
).
5.
S.
Ghai
, “
Are dental schools adequately preparing dental students to face outbreaks of infectious diseases such as COVID-19?
,”
J. Dental Educ.
84
,
631
633
(
2020
).
6.
W.
Wang
,
Y.
Nie
,
W.
Li
,
T.
Lin
,
M.-S.
Shang
,
S.
Su
,
Y.
Tang
,
Y.-C.
Zhang
, and
G.-Q.
Sun
, “
Epidemic spreading on higher-order networks
,”
Phys. Rep.
1056
,
1
70
(
2024
).
7.
M.
Kibanov
,
M.
Atzmueller
,
C.
Scholz
, and
G.
Stumme
, “
Temporal evolution of contacts and communities in networks of face-to-face human interactions
,”
Sci. China Inform. Sci.
57
,
1
17
(
2014
).
8.
Z.
Wang
,
Y.
Moreno
,
S.
Boccaletti
, and
M.
Perc
, “
Vaccination and epidemics in networked populations—An introduction
,”
Chaos Solitons Fractals
103
,
177
183
(
2017
).
9.
M.
Oliveira
,
F.
Karimi
,
M.
Zens
,
J.
Schaible
,
M.
Genois
, and
M.
Strohmaier
, “
Group mixing drives inequality in face-to-face gatherings
,”
Commun. Phys.
5
,
127
(
2022
).
10.
F.
Karimi
,
M.
Génois
,
C.
Wagner
,
P.
Singer
, and
M.
Strohmaier
, “
Homophily influences ranking of minorities in social networks
,”
Sci. Rep.
8
,
11077
(
2018
).
11.
J.
Moody
, “
Race, school integration, and friendship segregation in America
,”
Am. J. Sociol.
107
,
679
716
(
2001
).
12.
W.
Gu
,
W.
Li
,
F.
Gao
,
S.
Su
,
B.
Sun
, and
W.
Wang
, “
Influence of human motion patterns on epidemic spreading dynamics
,”
Chaos
34
(2),
023101
(
2024
).
13.
M.
Perc
,
J.
Gómez-Gardeñes
,
A.
Szolnoki
,
L. M.
Floría
, and
Y.
Moreno
, “
Evolutionary dynamics of group interactions on structured populations: A review
,”
J. Roy. Soc. Interface
10
,
20120997
(
2013
).
14.
J. A.
Jacquez
,
C. P.
Simon
, and
J.
Koopman
, “Structured mixing: Heterogeneous mixing by the definition of activity groups,” in Mathematical and Statistical Approaches to AIDS Epidemiology, Lecture Notes in Biomathematics, edited by C. Castillo-Chavez (Springer, Berlin, 1989), pp. 301–315.
15.
W.
Wang
,
W.
Li
, and
J.
Li
, “
Prevention and control strategy for network infectious disease spreading based on social information diffusion
,”
J. Chongqing Med. Univ.
12
,
1393
1400
(
2023
).
16.
R. M.
May
and
R. M.
Anderson
, “
Transmission dynamics of HIV infection
,”
Nature
326
,
137
142
(
1987
).
17.
E. G.
Knox
, “
A transmission model for AIDS
,”
Eur. J. Epidemiol.
2
,
165
177
(
1986
).
18.
H. W.
Hethcote
and
J. W.
Van Ark
, “
Epidemiological models for heterogeneous populations: Proportionate mixing, parameter estimation, and immunization programs
,”
Math. Biosci.
84
,
85
118
(
1987
).
19.
J. M.
Hyman
and
E. A.
Stanley
, “The effect of social mixing patterns on the spread of AIDS,” in Mathematical Approaches to Problems in Resource Management and Epidemiology, Lecture Notes in Biomathematics, edited by C. Castillo-Chavez, S. A. Levin, and C. A. Shoemaker (Springer, Berlin, 1989), pp. 190–219.
20.
S. Y.
Del Valle
,
J. M.
Hyman
,
H. W.
Hethcote
, and
S. G.
Eubank
, “
Mixing patterns between age groups in social networks
,”
Soc. Netw.
29
,
539
554
(
2007
).
21.
M.
Newman
and
M.
Girvan
, “Mixing patterns and community structure in networks,” in Statistical Mechanics of Complex Networks, Lecture Notes in Physics, edited by R. Pastor-Satorras, M. Rubi, and A. Diaz-Guilera (Springer, Berlin, 2003), pp. 66–87.
22.
M. E. J.
Newman
, “
Mixing patterns in networks
,”
Phys. Rev. E
67
,
026126
(
2003
).
23.
T. D.
Tuong
,
D. H.
Nguyen
, and
N. N.
Nguyen
, “
Stochastic multi-group epidemic SVIR models: Degenerate case
,”
Commun. Nonlinear Sci. Numer. Simul.
128
,
107588
(
2024
).
24.
S.
Aniţa
,
M.
Banerjee
,
S.
Ghosh
, and
V.
Volpert
, “
Vaccination in a two-group epidemic model
,”
Appl. Math. Lett.
119
,
107197
(
2021
).
25.
P.
DiMaggio
and
F.
Garip
, “
How network externalities can exacerbate intergroup inequality
,”
Am. J. Sociol.
116
,
1887
1933
(
2011
).
26.
A.
Calvó-Armengol
and
M. O.
Jackson
, “
The effects of social networks on employment and inequality
,”
Am. Econ. Rev.
94
(3),
426
454
(
2004
).
27.
J.
Fournet
and
A.
Barrat
, “
Contact patterns among high school students
,”
PLoS One
9
,
e107878
(
2014
).
28.
J.
Stehlé
,
N.
Voirin
,
A.
Barrat
,
C.
Cattuto
,
L.
Isella
et al., “
High-resolution measurements of face-to-face contact patterns in a primary school
,”
PLoS One
6
(8),
e23176
(
2011
).
29.
P.
DiMaggio
and
F.
Garip
, “
Network effects and social inequality
,”
Ann. Rev. Sociol.
38
,
93
118
(
2012
).
30.
J.-I.
Watanabe
,
N.
Ishibashi
, and
K.
Yano
, “
Exploring relationship between face-to-face interaction and team performance using wearable sensor badges
,”
PLoS One
9
,
e114681
(
2014
).
31.
C.
Cattuto
,
W.
Van den Broeck
,
A.
Barrat
,
V.
Colizza
,
J.-F.
Pinton
, and
A.
Vespignani
, “
Dynamics of person-to-person interactions from distributed RFID sensor networks
,”
PLoS One
5
,
e11596
(
2010
).
32.
L.
Isella
,
J.
Stehlé
,
A.
Barrat
,
C.
Cattuto
,
J.-F.
Pinton
, and
W.
Van den Broeck
, “
What’s in a crowd? Analysis of face-to-face behavioral networks
,”
J. Theor. Biol.
271
,
166
180
(
2011
).
33.
Y.
Li
,
J.
Zhang
, and
M.
Perc
, “
Effects of compassion on the evolution of cooperation in spatial social dilemmas
,”
Appl. Math. Comput.
320
,
437
443
(
2018
).
34.
M. E. J.
Newman
, “
Spread of epidemic disease on networks
,”
Phys. Rev. E
66
,
016128
(
2002
).
35.
K.
Zhao
,
J.
Stehlé
,
G.
Bianconi
, and
A.
Barrat
, “
Social network dynamics of face-to-face interactions
,”
Phys. Rev. E
83
,
056109
(
2011
).
36.
M.
Starnini
,
A.
Baronchelli
, and
R.
Pastor-Satorras
, “
Modeling human dynamics of face-to-face interaction networks
,”
Phys. Rev. Lett.
110
,
168701
(
2013
).
37.
Y.-Q.
Zhang
,
J.
Cui
,
S.-M.
Zhang
,
Q.
Zhang
, and
X.
Li
, “
Modelling temporal networks of human face-to-face contacts with public activity and individual reachability
,”
Eur. Phys. J. B
89
,
26
(
2016
).
38.
M. A. R.
Flores
and
F.
Papadopoulos
, “
Similarity forces and recurrent components in human face-to-face interaction networks
,”
Phys. Rev. Lett.
121
,
258301
(
2018
).
39.
O.
Diekmann
,
J. A. P.
Heesterbeek
, and
M. G.
Roberts
, “
The construction of next-generation matrices for compartmental epidemic models
,”
J. R. Soc. Interface
7
,
873
885
(
2009
).
You do not currently have access to this content.