Cardiac arrythmias are a form of heart disease that contributes toward making heart disease a significant cause of death globally. Irregular rhythms associated with cardiac arrythmias are thought to arise due to singularities in the heart tissue that generate reentrant waves in the underlying excitable medium. A normal approach to removing such singularities is to apply a high voltage electric shock, which effectively resets the phase of the cardiac cells. A concern with the use of this defibrillation technique is that the high-energy shock can cause lasting damage to the heart tissue. Various theoretical works have investigated lower-energy alternatives to defibrillation. In this work, we demonstrate the effectiveness of a low-energy defibrillation method in an experimental 2D Belousov–Zhabotinsky (BZ) system. When implemented as a 2D spatial reaction, the BZ reaction serves as an effective analog of general excitable media and supports regular and reentrant wave activity. The defibrillation technique employed involves targeted low-energy perturbations that can be used to “teleport” and/or annihilate singularities present in the excitable BZ medium.

1.
M.
Vaduganathan
,
G. A.
Mensah
,
J.
Varieur Turco
,
V.
Fuster
, and
G. A.
Roth
, “
The global burden of cardiovascular diseases and risk
,”
J. Am. Coll. Cardiol.
80
(
25
),
2361
2371
(
2022
).
2.
S. S.
Virani
,
A.
Alonso
,
H. J.
Aparicio
,
E. J.
Benjamin
,
M. S.
Bittencourt
,
C. W.
Callaway
,
A. P.
Carson
,
A. M.
Chamberlain
,
S.
Cheng
,
F. N.
Delling
,
M. S. V.
Elkind
,
K. R.
Evenson
,
J. F.
Ferguson
,
D. K.
Gupta
,
S. S.
Khan
,
B. M.
Kissela
,
K. L.
Knutson
,
C. D.
Lee
,
T. T.
Lewis
,
J.
Liu
,
M. S.
Loop
,
P. L.
Lutsey
,
J.
Ma
,
J.
Mackey
,
S. S.
Martin
,
D. B.
Matchar
,
M. E.
Mussolino
,
S. D.
Navaneethan
,
A. M.
Perak
,
G. A.
Roth
,
Z.
Samad
,
G. M.
Satou
,
E. B.
Schroeder
,
S. H.
Shah
,
C. M.
Shay
,
A.
Stokes
,
L. B.
VanWagner
,
N.-Y.
Wang
, and
C. W.
Tsao
, “
Heart disease and stroke statistics—2021 update
,”
Circulation
143
(
8
),
e254
e743
(
2021
).
3.
C. X.
Wong
,
A.
Brown
,
D. H.
Lau
,
S. S.
Chugh
,
C. M.
Albert
,
J. M.
Kalman
, and
P.
Sanders
, “
Epidemiology of sudden cardiac death: Global and regional perspectives
,”
Heart Lung Circ.
28
(
1
),
6
14
(
2018
).
4.
Z.-J.
Zheng
,
J. B.
Croft
,
W. H.
Giles
, and
G. A.
Mensah
, “
Sudden cardiac death in the United States, 1989 to 1998
,”
Circulation
104
(
18
),
2158
2163
(
2001
).
5.
D. J.
Dosdall
,
V. G.
Fast
, and
R. E.
Ideker
, “
Mechanisms of defibrillation
,”
Annu. Rev. Biomed. Eng.
12
,
233
258
(
2010
).
6.
J. L.
Prevost
and
F.
Batelli
, “
Sur quelques aspets des décharges électriques sur le coeur des mammiferes
,”
CR Seances Acad. Sci.
129
,
1267
1268
(
1899
).
7.
I. R.
Efimov
,
Y.
Cheng
,
D. R.
Van Wagoner
,
T.
Mazgalev
, and
P. J.
Tchou
, “
Virtual electrode-induced phase singularity: A basic mechanism of defibrillation failure
,”
Circ. Res.
82
(
8
),
918
925
(
1998
).
8.
N.
DeTal
,
A.
Kaboudian
, and
F. H.
Fenton
, “
Terminating spiral waves with a single desgined stimulus: Teleporation as the mechanism for defibrillation
,”
Proc. Natl. Acad. Sci. U. S. A.
119
(
24
),
e2117568119
(
2022
).
9.
T.
Amemiya
,
S.
Kádár
,
P.
Kettunen
, and
K.
Showalter
, “
Spiral wave formation in three-dimensional excitable media
,”
Phys. Rev. Lett.
77
(
15
),
3244
3247
(
1996
).
10.
V. K.
Vanag
and
I. R.
Epstein
, “
Segmented spiral waves in a reaction-diffusion system
,”
Proc. Natl. Acad. Sci. U. S. A.
100
(
25
),
14635
14638
(
2003
).
11.
A. S.
Adabag
,
R. V.
Luepker
,
V. L.
Roger
, and
B. J.
Gersh
, “
Sudden cardiac death: Epidemiology and risk factors
,”
Nat. Rev. Cardiol.
7
(
4
),
216
225
(
2010
).
12.
J. M.
Davidenko
,
A. V.
Pertsov
,
R.
Salomonsz
,
W.
Baxter
, and
J.
Jalife
, “
Stationary and drifting spiral waves of excitation in isolated cardiac muscle
,”
Nature
355
(
6358
),
349
351
(
1992
).
13.
A. T.
Winfree
, “
Electrical instability in cardiac muscle: Phase singularities and rotors
,”
J. Theor. Biol.
138
(
3
),
353
405
(
1989
).
14.
E. M.
Cherry
and
F. H.
Fenton
, “
Visualization of spiral and scroll waves in simulated and experimental cardiac tissue
,”
New J. Phys.
10
(
12
),
125016
(
2008
).
15.
F. H.
Fenton
,
S.
Luther
,
E. M.
Cherry
,
N. F.
Otani
,
V.
Krinsky
,
A.
Pumir
,
E.
Bodenschatz
, and
R. F.
Gilmour
, Jr.
, “
Termination of atrial fibrillation using pulsed low-energy far-field stimulation
,”
Circulation
120
,
467
476
(
2009
).
16.
R. A.
Gray
,
A. M.
Pertsov
, and
J.
Jalife
, “
Spatial and temporal organization during cardiac fibrillation
,”
Nature
392
(
6671
),
75
78
(
1998
).
17.
S.
Luther
,
F. H.
Fenton
,
B. G.
Kornreich
,
A.
Squires
,
P.
Bittihn
,
D.
Hornung
,
M.
Zabel
,
J.
Flanders
,
A.
Gladuli
,
L.
Campoy
,
E. M.
Cherry
,
G.
Luther
,
G.
Hasenfuss
,
V. I.
Krinsky
,
A.
Pumir
,
R. F.
Gilmour
, Jr.
, and
E.
Bodenschatz
, “
Low-energy control of electrical turbulence in the heart
,”
Nature
475
(
7355
),
235
239
(
2011
).
18.
W.
Li
,
A. H.
Janardhan
,
V. V.
Fedorov
,
Q.
Sha
,
R. B.
Schuessler
, and
I. R.
Efimov
, “
Low-energy multistage atrial defibrillation therapy terminates atrial fibrillation with less energy than a single shock
,”
Circ. Arrhythmia Electrophysiol.
4
(
6
),
917
925
(
2011
).
19.
A. T.
Winfree
,
When Time Breaks Down: The Three-Dimensional Dynamics of Electrochemical Waves and Cardiac Arrhythmias
(
Princeton University Press
,
1987
).
20.
A. T.
Winfree
and
S. H.
Strogatz
, “
Singular filaments organize chemical waves in three dimensions: I. Geometrically simple waves
,”
Physica D
8
,
35
49
(
1983
).
21.
V. I.
Krinsky
,
V. N.
Biktashev
, and
A. M.
Pertsov
, “
Autowave approaches to cessation of reentrant arrhythmias
,”
Ann. N. Y. Acad. Sci.
591
(
1
),
232
246
(
1990
).
22.
J. P.
Keener
, “
The topology of defibrillation
,”
J. Theor. Biol.
230
(
4
),
459
473
(
2004
).
23.
C. D.
Marcotte
and
R. O.
Grigoriev
, “
Dynamical mechanism of atrial fibrillation: A topological approach
,”
Chaos
27
(
9
),
093936
(
2017
).
24.
A. M.
Pertsov
,
M.
Wellner
,
V.
Vinson
, and
J.
Jalife
, “
Topological constraint on scroll wave pinning
,”
Phys. Rev. Lett.
84
(
12
),
2738
2741
(
2000
).
25.
A. F.
Taylor
, “
Mechanism and phenomenology of an oscillating chemical reaction
,”
Prog. React. Kinet. Mech.
27
(
4
),
247
326
(
2002
).
26.
R.
Toth
and
A. F.
Taylor
, “
The tris(2,2′-bipyridyl)ruthenium-catalysed Belousov–Zhabotinsky reaction
,”
Prog. React. Kinet. Mech.
31
(
2
),
59
115
(
2006
).
27.
D.
Yengi
,
M. R.
Tinsley
, and
K.
Showalter
, “
Autonomous cycling between excitatory and inhibitory coupling in photosensitive chemical oscillators
,”
Chaos
28
(
4
) (
2018
).
28.
A. J.
Steele
,
M.
Tinsley
, and
K.
Showalter
, “
Collective behavior of stabilized reaction-diffusion waves
,”
Chaos
18
(
2
) (
2008
).
29.
P.
Jung
,
A.
Cornell-Bell
,
F.
Moss
,
S.
Kadar
,
J.
Wang
, and
K.
Showalter
, “
Noise sustained waves in subexcitable media: From chemical waves to brain waves
,”
Chaos
8
(
3
),
567
575
(
1998
).
30.
T.
Yamaguchi
,
L.
Kuhnert
,
Z.
Nagy-Ungvarai
,
S. C.
Mueller
, and
B.
Hess
, “
Gel systems for the Belousov-Zhabotinskii reaction
,”
J. Phys. Chem.
95
(
15
),
5831
5837
(
1991
).
31.
T.
Amemiya
,
P.
Kettunen
,
S.
Kádár
,
T.
Yamaguchi
, and
K.
Showalter
, “
Formation and evolution of scroll waves in photosensitive excitable media
,”
Chaos
8
(
4
),
872
878
(
1998
).
32.
T.
Sakurai
,
E.
Mihaliuk
,
F.
Chirila
, and
K.
Showalter
, “
Design and control of wave propagation patterns in excitable media
,”
Science
296
(
5575
),
2009
2012
(
2002
).
33.
S.
Kádár
,
T.
Amemiya
, and
K.
Showalter
, “
Reaction mechanism for light sensitivity of the Ru(bpy)32+ catalyzed Belousov-Zhabotinsky reaction
,”
J. Phys. Chem. A
101
(
44
),
8200
8206
(
1997
).
34.
Y.
Mori
,
Y.
Nakamichi
,
T.
Sekiguchi
,
N.
Okazaki
,
T.
Matsumura
, and
I.
Hanazaki
, “
Photo-induction of chemical oscillation in the Belousov-Zhabotinsky reaction under the flow condition
,”
Chem. Phys. Lett.
211
(
4
),
421
424
(
1993
).
35.
R. J.
Field
and
R. M.
Noyes
, “
Oscillations in chemical systems. IV. Limit cycle behavior in a model of a real chemical reaction
,”
J. Chem. Phys.
60
(
5
),
1877
1884
(
1974
).
36.
J. J.
Tyson
and
P. C.
Fife
, “
Target patterns in a realistic model of the Belousov-Zhabotinskii reaction
,”
J. Chem. Phys.
73
(
5
),
2224
2237
(
1980
).
37.
A. M.
Pertsov
,
J. M.
Davidenko
,
R.
Salomonsz
,
W. T.
Baxter
, and
J.
Jalife
, “
Spiral waves of excitation underlie reentrant activity in isolated cardiac muscle
,”
Circ. Res.
72
(
3
),
631
650
(
1993
).
38.
D. W.
Frazier
,
P. D.
Wolf
,
J. M.
Wharton
,
A. S.
Tang
,
W. M.
Smith
, and
R. E.
Ideker
, “
Stimulus-induced critical point. Mechanism for electrical initiation of reentry in normal canine myocardium
,”
J. Clin. Invest.
83
(
3
),
1039
1052
(
1989
).
39.
R.
Tóth
,
V.
Gáspár
,
A.
Belmonte
,
M. C.
O’Connell
,
A.
Taylor
, and
S. K.
Scott
, “
Wave initiation in the ferroin-catalysed Belousov-Zhabotinsky reaction with visible light
,”
Phys. Chem. Chem. Phys.
2
(
3
),
413
416
(
2000
).
40.
N.
Chattipakorn
,
I.
Banville
,
R. A.
Gray
, and
R. E.
Ideker
, “
Effects of shock strengths on ventricular defibrillation failure
,”
Cardiovasc. Res.
61
(
1
),
39
44
(
2004
).
41.
I. R.
Efimov
,
Y.
Cheng
,
Y.
Yamanouchi
, and
P. J.
Tchou
, “
Direct evidence of the role of virtual electrode-induced phase singularity in success and failure of defibrillation
,”
J. Cardiovasc. Electrophysiol.
11
(
8
),
861
868
(
2000
).
42.
D.
Barkley
, “
Euclidean symmetry and the dynamics of rotating spiral waves
,”
Phys. Rev. Lett.
72
(
1
),
164
167
(
1994
).
43.
A. T.
Winfree
, “
Electrical turbulence in three-dimensional heart muscle
,”
Science
266
(
5187
),
1003
1006
(
1994
).
44.
F.
Fenton
and
A.
Karma
, “
Vortex dynamics in three-dimensional continuous myocardium with fiber rotation: Filament instability and fibrillation
,”
Chaos
8
(
1
),
20
47
(
1998
).
45.
W.
Liu
,
J. L.
Han
,
J.
Tomek
,
G.
Bub
, and
E.
Entcheva
, “
Simultaneous widefield voltage and dye-free optical mapping quantifies electromechanical waves in human induced pluripotent stem cell-derived cardiomyocytes
,”
ACS Photonics
10
(
4
),
1070
1083
(
2023
).
46.
T.
Amemiya
,
T.
Ohmori
,
M.
Nakaiwa
, and
T.
Yamaguchi
, “
Two-parameter stochastic resonance in a model of the photosensitive Belousov−Zhabotinsky reaction in a flow system
,”
J. Phys. Chem. A
102
(
24
),
4537
4542
(
1998
).
47.
T.
Ichino
,
K.
Fujio
,
M.
Matsushita
, and
S.
Nakata
, “
Wave propagation in the photosensitive Belousov-Zhabotinsky reaction across an asymmetric gap
,”
J. Phys. Chem. A
113
(
11
),
2304
2308
(
2009
).
48.
T. R.
Chigwada
,
P.
Parmananda
, and
K.
Showalter
, “
Resonance pacemakers in excitable media
,”
Phys. Rev. Lett.
96
(
24
),
244101
(
2006
).
You do not currently have access to this content.