We study rare events in the extreme value statistics of stochastic symmetric jump processes with power tails in the distributions of the jumps, using the big -jump principle. The principle states that in the presence of stochastic processes with power tails statistics, if at a certain time a physical quantity takes on a value much larger than its typical value, this large fluctuation is realized through a single macroscopic jump that exceeds the typical scale of the process by several orders of magnitude. In particular, our estimation focuses on the asymptotic behavior of the tail of the probability distribution of maxima, a fundamental quantity in a wide class of stochastic models used in chemistry to estimate reaction thresholds, in climatology for earthquake risk assessment, in finance for portfolio management, and in ecology for the collective behavior of species. We determine the analytical form of the probability distribution of rare events in the extreme value statistics of three jump processes with power tails: Lévy flights, Lévy walks, and the Lévy–Lorentz gas. For the Lévy flights, we re-obtain through the big-jump approach recent analytical results, extending their validity. For the Lévy–Lorentz gas, we show that the topology of the disordered lattice along which the walker moves induces memory effects in its dynamics, which influences the extreme value statistics. Our results are confirmed by extensive numerical simulations.

1.
C. W.
Gardiner
,
Handbook of Stochastic Methods: For Physics, Chemistry and the Natural Sciences
, 3rd ed. (
Springer Berlin
,
2004
).
2.
M. V.
Matthews
,
W. L.
Ellsworth
, and
P. A.
Reasenberg
, “
A Brownian model for recurrent earthquakes
,”
Bull. Seismol. Soc. Am.
92
,
2233
(
2002
).
3.
J. P.
Bouchaud
and
M.
Potters
,
Theory of Financial Risk and Derivative Pricing: From Statistical Physics to Risk Management
(
Cambridge University Press
,
2003
).
4.
S.
Albeverio
,
V.
Jentsch
, and
H.
Kantz
,
Extreme Events in Nature and Society
(
Springer Berlin
,
Heidelberg
,
2005
).
5.
H.
Kantz
, “Rare and extreme events,” in Reproducibility: Principles, Problems, Practices, and Prospects, edited by H. Atmanspacher and S. Maasen (John Wiley & Sons, Inc., 2015), Chap. 11.
6.
J. P.
Bouchaud
and
M.
Mézard
, “
Universality classes for extreme-value statistics
,”
J. Phys. A Math. Gen.
30
,
7997
(
1997
).
7.
S. N.
Majumdar
,
A.
Pal
, and
G.
Schehr
, “
Extreme value statistics of correlated random variables: A pedagogical review
,”
Phys. Rep.
840
,
1
(
2020
).
8.
A.
Guillet
,
E.
Roldán
, and
F.
Jülicher
, “
Extreme-value statistics of stochastic transport processes
,”
New J. Phys.
22
,
123038
(
2020
).
9.
L.
Zarfaty
,
E.
Barkai
, and
D. A.
Kessler
, “
Discrete sampling of extreme events modifies their statistics
,”
Phys. Rev. Lett.
129
,
094101
(
2022
).
10.
R.
Artuso
,
M.
Onofri
,
G.
Pozzoli
, and
M.
Radice
, “
Extreme value statistics of positive recurrent centrally biased random walks
,”
J. Stat. Mech. Theory Exp.
2022
,
103209
(
2022
).
11.
I.
Eliazar
,
R.
Metzler
, and
S.
Reuveni
, “
Gumbel central limit theorem for max-min and min-max
,”
Phys. Rev. E
100
,
020104
(
2019
).
12.
J.
Klinger
,
R.
Voituriez
, and
O.
Bénichou
, “Extreme value statistics of jump processes,”
Phys. Rev. E
109
(5),
L052101
(
2024
).
13.
P.
Mounaix
,
S. N.
Majumdar
, and
G.
Schehr
, “
Asymptotics for the expected maximum of random walks and Lévy flights with a constant drift
,”
J. Stat. Mech. Theory Exp.
2018
,
083201
(
2018
).
14.
B. D.
Bruyne
,
S. N.
Majumdar
, and
G.
Schehr
, “
Expected maximum of bridge random walks & Lévy flights
,”
J. Stat. Mech. Theory Exp.
2021
,
083215
(
2021
).
15.
V. P.
Chistyakov
, “
A theorem on sums of independent positive random variables and its applications to branching random processes
,”
Theory Probab. Appl.
9
,
640
(
1964
).
16.
S.
Foss
,
D.
Korshunov
, and
S.
Zachary
,
An Introduction to Heavy-Tailed and Subexponential Distributions
(
Springer
,
New York
,
2013
).
17.
A.
Vezzani
,
E.
Barkai
, and
R.
Burioni
, “
Single-big-jump principle in physical modeling
,”
Phys. Rev. E
100
,
012108
(
2019
).
18.
V.
Zaburdaev
,
S.
Denisov
, and
J.
Klafter
, “
Lévy walks
,”
Rev. Mod. Phys.
87
,
483
(
2015
).
19.
A.
Vezzani
,
E.
Barkai
, and
R.
Burioni
, “
Rare events in generalized Lévy walks and the big jump principle
,”
Sci. Rep.
10
,
2732
(
2020
).
20.
R.
Burioni
and
A.
Vezzani
, “
Rare events in stochastic processes with sub-exponential distributions and the big jump principle
,”
J. Stat. Mech.
2020
,
034005
(
2020
).
21.
O.
Hamdi
,
S.
Burov
, and
E.
Barkai
, “
Laplace’s first law of errors applied to diffusive motion
,”
Eur. Phys. J. B
97
,
67
(
2024
).
22.
R.
Burioni
,
L.
Caniparoli
, and
A.
Vezzani
, “
Lévy walks and scaling in quenched disordered media
,”
Phys. Rev. E
81
,
060101
(
2010
).
23.
W.
Wang
,
A.
Vezzani
,
R.
Burioni
, and
E.
Barkai
, “
Transport in disordered systems: The single big jump approach
,”
Phys. Rev. Res.
1
,
033172
(
2019
).
24.
R.
Burioni
,
S.
di Santo
,
S.
Lepri
, and
A.
Vezzani
, “
Scattering lengths and universality in superdiffusive Lévy materials
,”
Phys. Rev. E
86
,
031125
(
2012
).
25.
R.
Burioni
,
G.
Gradenigo
,
A.
Sarracino
,
A.
Vezzani
, and
A.
Vulpiani
, “
Rare events and scaling properties in field-induced anomalous dynamics
,”
J. Stat. Mech. Theory Exp.
2013
,
P09022
(
2013
).
26.
R.
Burioni
,
G.
Gradenigo
,
A.
Sarracino
,
A.
Vezzani
, and
A.
Vulpiani
, “
Scaling properties of field-induced superdiffusion in continuous time random walks
,”
Commun. Theor. Phys.
62
,
514
(
2014
).
27.
S. N.
Majumdar
, “
Universal first-passage properties of discrete-time random walks and Lévy flights on a line: Statistics of the global maximum and records
,”
Physica A
389
,
4299
(
2010
).
28.
A.
Vezzani
and
R.
Burioni
, “Fast rare events in exit times distributions of jump processes,”
Phys. Rev. Lett.
132
(18),
187101
(
2024
).
29.
E.
Barkai
,
V.
Fleurov
, and
J.
Klafter
, “
One-dimensional stochastic Lévy-Lorentz gas
,”
Phys. Rev. E
61
,
1164
(
2000
).
30.
C. W. J.
Beenakker
,
C. W.
Groth
, and
A. R.
Akhmerov
, “
Nonalgebraic length dependence of transmission through a chain of barriers with a Lévy spacing distribution
,”
Phys. Rev. B
79
,
024204
(
2009
).
31.
A.
Bianchi
,
G.
Cristadoro
,
M.
Lenci
, and
M.
Ligabò
, “
Random walks in a one-dimensional Levy random environment
,”
J. Stat. Phys.
163
,
22
(
2016
).
You do not currently have access to this content.