This paper introduces a novel data-driven approximation method for the Koopman operator, called the RC-HAVOK algorithm. The RC-HAVOK algorithm combines Reservoir Computing (RC) and the Hankel Alternative View of Koopman (HAVOK) to reduce the size of the linear Koopman operator with a lower error rate. The accuracy and feasibility of the RC-HAVOK algorithm are assessed on Lorenz-like systems and dynamical systems with various nonlinearities, including the quadratic and cubic nonlinearities, hyperbolic tangent function, and piece-wise linear function. Implementation results reveal that the proposed model outperforms a range of other data-driven model identification algorithms, particularly when applied to commonly used Lorenz time series data.

1.
W.
Ren
,
X.
Na
,
Y.
Li
, and
M.
Han
, “
Physics-informed hierarchical echo state network for predicting the dynamics of chaotic systems
,”
Expert Syst. Appl.
228
,
120155
(
2023
).
2.
B.
Ovilla-Martinez
,
E.
Tlelo-Cuautle
,
A. M.
Gonzalez-Zapata
,
L. G.
de la Fraga
, and
I.
Cruz-Vega
, “
Enhanced FPGA implementation of echo state networks for chaotic time series prediction
,”
Integration
92
,
48
57
(
2023
).
3.
C.
Marone
,
M.
Cocco
,
A.
Gualandi
,
D.
Faranda
, and
G.
Mengaldo
, “
Deterministic and stochastic chaos characterize laboratory earthquakes
,”
Earth Planet Sci. Lett.
604
,
117995
(
2023
).
4.
G.
Ghosh
et al., “
Secure surveillance systems using partial-regeneration-based non-dominated optimization and 5D-chaotic map
,”
Symmetry (Basel)
13
,
1447
(
2021
).
5.
Y.
Liu
and
H. H. C.
Iu
, “
Antimonotonicity, chaos and multidirectional scroll attractor in autonomous odes chaotic system
,”
IEEE Access
8
,
77171
77178
(
2020
).
6.
B. O.
Koopman
, “
Hamiltonian systems and transformation in Hilbert space
,”
Proc. Natl. Acad. Sci.
17
,
315
(
1931
).
7.
I.
Mezić
, “
Spectral properties of dynamical systems, model reduction and decompositions
,”
Nonlinear Dyn.
41
,
309
325
(
2005
).
8.
S.
Maćešić
,
N.
Črnjarić Žic
, and
I.
Mezić
, “
Koopman operator spectrum for random dynamical systems
,”
J. Nonlinear Sci.
30
,
2007
2056
(
2020
).
9.
R.
Mohr
,
M.
Budišić
and
I.
Mezić
, “
Applied Koopmanism
,”
Chaos
22
,
047510
(
2012
).
10.
B.
Chen
et al., “
Data-driven Koopman model predictive control for optimal operation of high-speed trains
,”
IEEE Access
9
,
82233
82248
(
2021
).
11.
C. S.
Kallesøe
,
J. N.
Jensen
,
L. H.
Andersen
,
C. M.
Jensen
,
M. C.
Frederiksen
, and
R.
Izadi-Zamanabadi
, “HAVOK model predictive control for time-delay systems with applications to district heating,” IFAC-PapersOnLine (22nd IFAC World Congress, 2022), Vol. 56, pp. 2238–2243.
12.
M.
Yadegar
,
M.
Bakhtiaridoust
,
F. N.
Irani
, and
N.
Meskin
, “
Data-driven sensor fault detection and isolation of nonlinear systems: Deep neural-network Koopman operator
,”
ET Control Theory Appl.
17
,
123
132
(
2022
).
13.
X.
Xu
,
X.
Liu
,
Y.
Xiao
,
X.
Zhang
, and
J.
Liu
, “
Deep neural networks with Koopman operators for modeling and control of autonomous vehicles
,”
IEEE Trans. Intell. Veh.
8
,
153
146
(
2023
).
14.
L. J.
Ratliff
,
E.
Ling
,
L.
Zheng
, and
S.
Coogani
, “
Koopman operator applications in signalized traffic systems
,”
IEEE Trans. Intell. Transp. Syst.
23
,
3214
3225
(
2022
).
15.
R. G.
Moulder
,
E.
Martynova
and
S. M.
Boker
, “
HAVOK extensions for psychological time series forecasting
,”
Multivariate Behav. Res.
57
,
171
172
(
2022
).
16.
J.
Ding
,
C.
Cheng
and
Y.
Zhang
, “
A Koopman operator approach for machinery health monitoring and prediction with noisy and low-dimensional industrial time series
,”
Neurocomputing
406
,
204
214
(
2020
).
17.
N.
Cassamo
and
J. W.
van Wingerden
, “
On the potential of reduced order models for wind farm control: A Koopman dynamic mode decomposition approach
,”
Energies (Basel)
13
,
6513
(
2020
).
18.
X.
Li
,
Y.
Liu
,
Z.
Ping
,
Z.
Yin
, and
T.
Yang
, “
Deep Koopman model predictive control for enhancing transient stability in power grids
,”
Int. J. Robust Nonlinear Control
31
,
1964
1978
(
2021
).
19.
F.
Lunkeit
,
A.
Tantet
,
V.
Lucarini
, and
H. A.
Dijkstra
, “
Crisis of the chaotic attractor of a climate model: A transfer operator approach
,”
Nonlinearity
31
,
2221
2251
(
2018
).
20.
P.
Schlatter
,
H.
Azizpour
,
H.
Eivazi
,
L.
Guastoni
, and
R.
Vinuesa
, “
Recurrent neural networks and Koopman-based frameworks for temporal predictions in a low-order model of turbulence
,”
Int. J. Heat Fluid Flow
90
,
108816
(
2021
).
21.
S. H.
Son
,
A.
Narasingam
and
J. S. I.
Kwon
, “
Data-driven feedback stabilisation of nonlinear systems: Koopman-based model predictive control
,”
Int. J. Control
96
,
770
781
(
2023
).
22.
A.
Surana
, “
Koopman operator framework for time series modeling and analysis
,”
J. Nonlinear Sci.
30
,
1973
2006
(
2020
).
23.
E.
Bollt
, “
On explaining the surprising success of reservoir computing forecaster of chaos? The universal machine learning dynamical system with contrast to VAR and DMD
,”
Chaos
31
,
013108
(
2021
).
24.
M.
Gulina
and
A.
Mauroy
, “
Two methods to approximate the Koopman operator with a reservoir computer
,”
Chaos
31
,
023116
(
2021
).
25.
J. H.
Tu
,
K. K.
Chen
and
C. W.
Rowley
, “
Variants of dynamic mode decomposition: Boundary condition, Koopman, and Fourier analyses
,”
J. Nonlinear Sci.
22
,
887
915
(
2012
).
26.
S.
Sosnowski
,
P.
Bevanda
and
S.
Hirche
, “
Koopman operator dynamical models: Learning, analysis and control
,”
Annu. Rev. Control
52
,
197
212
(
2021
).
27.
A. T.
Ihler
,
D. J.
Alford-Lago
,
C. W.
Curtis
, and
O.
Issan
, “
Deep learning enhanced dynamic mode decomposition
,”
Chaos
32
,
033116
(
2022
).
28.
I. G.
Kevrekidis
,
M. O.
Williams
and
C. W.
Rowley
, “
A data-driven approximation of the Koopman operator: Extending dynamic mode decomposition
,”
J. Nonlinear Sci.
25
,
1307
1346
(
2015
).
29.
E. M.
Bollt
,
Q.
Li
,
F.
Dietrich
, and
I. G.
Kevrekidis
, “
Extended dynamic mode decomposition with dictionary learning: A data-driven adaptive spectral decomposition of the Koopman operator
,”
Chaos
27
,
103111
(
2017
).
30.
J. L.
Proctor
,
S. L.
Brunton
and
J. N.
Kutz
, “
Discovering governing equations from data by sparse identification of nonlinear dynamical systems
,”
Proc. Natl. Acad Sci. U.S.A.
113
,
3932
3937
(
2016
).
31.
J. L.
Proctor
,
S. L.
Brunton
and
J. N.
Kutz
, “Sparse identification of nonlinear dynamics with control (SINDYc),” IFAC-PapersOnLine (10th IFAC Symposium on Nonlinear Control Systems NOLCOS, 2016), Vol. 49, pp. 710–715.
32.
M.
Stender
,
C.
Geier
and
N.
Hoffmann
, “
Data-driven reduced order modeling for mechanical oscillators using Koopman approaches
,”
Front Appl. Math. Stat.
9
,
1124602
(
2023
).
33.
J. N.
Kutz
,
K.
Kaheman
and
S. L.
Brunton
, “
SINDy-PI: A robust algorithm for parallel implicit sparse identification of nonlinear dynamics
,”
Proc. R. Soc. A
476
,
20200279
(
2020
).
34.
J. L.
Proctor
,
E.
Kaiser
,
S. L.
Brunton
,
B. W.
Brunton
, and
J. N.
Kutz
, “
Chaos as an intermittently forced linear system
,”
Nat. Commun.
8
,
19
(
2016
).
35.
P.
Goyal
,
A.
Forootani
and
P.
Benner
, “A robust SINDy approach by combining neural networks and an integral form,” arXiv preprint arXiv:2309.07193 (2023).
36.
G.
Tanaka
et al., “
Recent advances in physical reservoir computing: A review
,”
Neural Netw.
115
,
100
123
(
2019
).
37.
L.
Larger
et al., “
Photonic information processing beyond turing: An optoelectronic implementation of reservoir computing
,”
Opt. Express
20
,
3241
(
2012
).
38.
E. A.
Viktorov
,
A.
Locquet
,
D. S.
Citrin
,
G. O.
Danilenko
,
A. V.
Kovalev
, and
D.
Rontani
, “
Impact of filtering on photonic time-delay reservoir computing
,”
Chaos
33
,
013116
(
2023
).
39.
J.
Bueno
,
A.
Argyris
and
I.
Fischer
, “
Photonic machine learning implementation for signal recovery in optical communications
,”
Sci. Rep.
8
,
8487
(
2018
).
40.
M.
Small
,
T.
Lymburn
,
S. D.
Algar
, and
T.
Jüngling
, “
Reservoir computing with swarms
,”
Chaos
31
,
033121
(
2021
).
41.
T. L.
Carroll
and
L. M.
Pecora
, “
Network structure effects in reservoir computers
,”
Chaos
29
,
083130
(
2019
).
42.
E.
Martynova
,
R. G.
Moulder
and
S. M.
Boker
, “
Extracting nonlinear dynamics from psychological and behavioral time series through HAVOK analysis
,”
Multivariate Behav. Res.
58
,
441
465
(
2023
).
43.
E. N.
Lorenz
, “
Deterministic nonperiodic flow
,”
J. Atmos Sci.
20
,
130
141
(
1963
).
44.
L.
Liu
,
C.
Liu
,
T.
Liu
, and
K.
Liu
, “
A new chaotic attractor
,”
Chaos Solitons Fractals
22
,
1031
1038
(
2004
).
45.
S.
Yan-Chen
,
L.
Ling
and
L.
Chong-Xin
, “
Experimental confirmation of a new reversed butterfly-shaped attractor
,”
Chin. Phys. Soc.
16
,
1897
1900
(
2007
).
46.
M.
Zhang
and
Q.
Han
, “
Dynamic analysis of an autonomous chaotic system with cubic nonlinearity
,”
Optik (Stuttg)
27
,
4315
43199
(
2016
).
47.
T.
Matsumoto
, “
The double scroll family
,”
IEEE Trans. Circuits Syst.
33
,
1072
1118
(
1986
).
48.
R.
Madan
,
Chua’s Circuit: A Paradigm fir Chaos
(
World Scientific
,
1993
).
49.
Z.
Zhang
,
Y.
Huang
,
S.
Cai
,
F.
Yu
,
H.
Shen
, and
S.
Du
, “
A new multi-scroll Chua’s circuit with composite hyperbolic tangent-cubic nonlinearity: Complex dynamics, hardware implementation and image encryption application
,”
Integration
81
,
71
83
(
2021
).
50.
C.
Wah Wu
,
A.
Huang
,
L.
Pivka
, and
M.
Franz
, “
Chua’s equation with cubic nonlinearity
,”
Int. J. Bifurcation Chaos Appl. Sci. Eng.
6
,
2175
2222
(
1996
).
51.
J.
Song
,
J.
Wu
,
C.
Zhao
,
J.
Yang
,
J.
Zhao
, and
H.
Leng
, “
A hybrid method using HAVOK analysis and machine learning for predicting chaotic time series
,”
Entropy
24
,
408
(
2022
).
52.
S.
Ouala
et al., “
Learning latent dynamics for partially observed chaotic systems
,”
Chaos
30
,
103121
(
2020
).
53.
M.
Li
and
L.
Jiang
, “
Deep learning nonlinear multiscale dynamic problems using Koopman operator
,”
J. Comput. Phys.
446
,
110660
(
2021
).
54.
J.
Axås
and
G.
Haller
, “
Model reduction for nonlinearizable dynamics via delay-embedded spectral submanifolds
,”
Nonlinear Dyn.
111
,
22079
22099
(
2023
).
55.
J. N.
Kutz
,
E.
Kaiser
and
S. L.
Brunton
, “
Data-driven discovery of Koopman eigenfunctions for control
,”
Mach. Learn. Sci. Technol.
2
,
035023
(
2021
).
You do not currently have access to this content.