This study presents a Bayesian maximum a posteriori (MAP) framework for dynamical system identification from time-series data. This is shown to be equivalent to a generalized Tikhonov regularization, providing a rational justification for the choice of the residual and regularization terms, respectively, from the negative logarithms of the likelihood and prior distributions. In addition to the estimation of model coefficients, the Bayesian interpretation gives access to the full apparatus for Bayesian inference, including the ranking of models, the quantification of model uncertainties, and the estimation of unknown (nuisance) hyperparameters. Two Bayesian algorithms, joint MAP and variational Bayesian approximation, are compared to the least absolute shrinkage and selection operator (LASSO), ridge regression, and the sparse identification of nonlinear dynamics (SINDy) algorithms for sparse regression by application to several dynamical systems with added Gaussian or Laplace noise. For multivariate Gaussian likelihood and prior distributions, the Bayesian formulation gives Gaussian posterior and evidence distributions, in which the numerator terms can be expressed in terms of the Mahalanobis distance or “Gaussian norm” | | y y ^ | | M 1 2 = ( y y ^ ) M 1 ( y y ^ ), where y is a vector variable, y ^ is its estimator, and M is the covariance matrix. The posterior Gaussian norm is shown to provide a robust metric for quantitative model selection for the different systems and noise models examined.

1.
S. L.
Brunton
,
J. L.
Proctor
, and
J. N.
Kutz
, “
Discovering governing equations from data by sparse identification of nonlinear dynamical systems
,”
Proc. Natl. Acad. Sci. U.S.A.
113
(
15
),
3932
3937
(
2016
).
2.
H.
Schaeffer
, “
Learning partial differential equations via data discovery and sparse optimization
,”
Proc. R. Soc. A
473
,
20160446
(
2016
).
3.
N. M.
Mangan
,
J. N.
Kutz
,
S. L.
Brunton
, and
J. L.
Proctor
, “
Model selection for dynamical systems via sparse regression and information criteria
,”
Proc. R. Soc. A
473
,
20170009
(
2017
).
4.
S. H.
Rudy
,
S. L.
Brunton
,
J. L.
Proctor
, and
J. N.
Kutz
, “
Data-driven discovery of partial differential equations
,”
Sci. Adv.
3
,
e1602614
(
2017
).
5.
E.
Kaiser
,
J. N.
Kutz
, and
S. L.
Brunton
, “
Sparse identification of nonlinear dynamics for model predictive control in the low-data limit
,”
Proc. R. Soc. A
474
,
20180335
(
2018
).
6.
M.
Quade
,
M.
Abel
,
J. N.
Kutz
, and
S. L.
Brunton
, “
Sparse identification of nonlinear dynamics for rapid model recovery
,”
Chaos
28
,
063116
(
2018
).
7.
N. M.
Mangan
,
T.
Askham
,
S. L.
Brunton
,
J. N.
Kutz
, and
J. L.
Proctor
, “
Model selection for hybrid dynamical systems via sparse regression
,”
Proc. R. Soc. A
475
,
20180534
(
2019
).
8.
K.
Champion
,
B.
Lusch
,
J. N.
Kutz
, and
S. L.
Brunton
, “
Data-driven discovery of coordinates and governing equations
,”
Proc. Natl. Acad. Sci. U.S.A.
116
(
45
),
22445
22451
(
2019
).
9.
K.
Champion
,
P.
Zheng
,
A. Y.
Aravkin
,
S. L.
Brunton
, and
J. N.
Kutz
, “
A unified sparse optimization framework to learn parsimonious physics-informed models from data
,”
IEEE Access
8
,
169259
169271
(
2020
).
10.
K.
Kaheman
,
J. N.
Kutz
, and
S. L.
Brunton
, “
SINDy-PI: A robust algorithm for parallel implicit sparse identification of nonlinear dynamics
,”
Proc. R. Soc. A
476
,
20200279
(
2020
).
11.
U.
Fasel
,
J. N.
Kutz
,
B. W.
Brunton
, and
S. L.
Brunton
, “
Ensemble-SINDy: Robust sparse model discovery in the low-data, high-noise limit, with active learning and control
,”
Proc. R. Soc. A
478
,
20210904
(
2022
).
12.
Y.-C.
Lai
, “
Finding nonlinear system equations and complex network structures from data: A sparse optimization approach
,”
Chaos
31
,
082101
(
2021
).
13.
T.
Bayes
, “
An essay towards solving a problem in the doctrine of chance
,”
Philos. Trans. R. Soc. Lond.
53
,
370
418
(
1763
); presented by R. Price.
14.
P.
Laplace
, “
Mémoire sur la probabilité des causes par les évènements
,”
Acad. R. Sci.
6
,
621
656
(
1774
).
15.
E. T.
Jaynes
,
Probability Theory: The Logic of Science
(
Cambridge University Press
,
Cambridge, UK
,
2003
).
16.
U.
von Toussaint
, “
Bayesian inference in physics
,”
Rev. Mod. Phys.
83
(
3
),
943
999
(
2011
).
17.
G.
Polya
,
Mathematics and Plausible Reasoning: Vol II: Patterns of Plausible Inference
(
Princeton University Press
,
Princeton, NJ
,
1954
).
18.
R. T.
Cox
,
The Algebra of Probable Inference
(
John Hopkins Press
,
Baltimore, MD
,
1961
).
19.
J.
Venn
,
The Logic of Chance
(
Macmillan & Co.
,
London, UK
,
1888
).
20.
R. A.
Fisher
,
Statistical Methods for Research Workers
(
Oliver and Boyd
,
Edinburgh, UK
,
1925
).
21.
J.
Neyman
and
E. S.
Pearson
, “
On the problem of the most efficient tests of statistical hypotheses
,”
Philos. Trans. R. Soc. Lond. Ser. A
231
(
702
),
289–337
(
1933
).
22.
W.
Feller
,
An Introduction to Probability Theory and Its Applications
(
John Wiley & Sons, Inc.
,
New York
,
1966
), Vol. II.
23.
A.
Mohammad-Djafari
, “Inverse problems in signal and image processing and Bayesian inference framework: From basic to advanced Bayesian computation,” in Scube Seminar, L2S (CentraleSupélec, Gif-sur-Yvette, France, 2015).
24.
A.
Mohammad-Djafari
and
M.
Dumitru
, “
Bayesian sparse solutions to linear inverse problems with non-stationary noise with Student-t priors
,”
Digital Signal Process.
47
,
128
156
(
2015
).
25.
A.
Mohammad-Djafari
, “Approximate Bayesian computation for big data,” in Tutorial, MaxEnt 2016, Ghent, Belgium, 10–15 July 2016 (Laboratoire des Signaux et Systémes, CentraleSupélec, France, 2016).
26.
A.
Teckentrup
, “Introduction to the Bayesian approach to inverse problems,” in Presentation, MaxEnt 2018, London, UK, 6 July 2018 (University of Edinburgh, Edinburgh, UK, 2018).
27.
D.
Calvetti
and
E.
Somersalo
, “
Inverse problems: From regularization to Bayesian inference
,”
Wiley Interdiscip. Rev. Comput. Stat.
10
(
2
),
e1427
(
2018
).
28.
W.
Pan
,
Y.
Yuan
,
J.
Goncalves
, and
G.-B.
Stan
, “
A sparse Bayesian approach to the identification of nonlinear state-space systems
,”
IEEE Trans. Autom. Control
61
(
1
),
182
187
(
2016
).
29.
S.
Zhang
and
G.
Lin
, “
Robust data-driven discovery of governing physical laws with error bars
,”
Proc. R. Soc. A: Math. Phys. Eng. Sci.
474
(
2217
),
20180305
(
2018
).
30.
R. K.
Niven
,
A.
Mohammad-Djafari
,
L.
Cordier
,
M.
Abel
, and
M.
Quade
, “
Bayesian identification of dynamical systems
,”
MDPI Proc.
33
(
1
),
33
(
2019
).
31.
A.
Chiuso
and
G.
Pillonetto
, “
System identification: A machine learning perspective
,”
Annu. Rev. Control Rob. Auton. Syst.
2
,
281
304
(
2019
).
32.
A.
Chen
and
G.
Lin
, “Robust data-driven discovery of partial differential equations with time-dependent coefficients,” arXiv:2102.01432v1 (2021).
33.
S. M.
Hirsh
,
D. A.
Barajas-Solano
, and
J. N.
Kutz
, “
Sparsifying priors for Bayesian uncertainty quantification in model discovery
,”
R. Soc. Open Sci.
9
,
211823
(
2022
).
34.
Y.
Yuan
,
X.
Li
,
L.
Li
,
F. J.
Jiang
,
X.
Tang
,
F.
Zhang
,
J.
Goncalves
,
H. U.
Voss
,
H.
Ding
, and
J.
Kurths
, “
Machine discovery of partial differential equations from spatiotemporal data: A sparse Bayesian learning framework
,”
Chaos
33
,
113122
(
2023
).
35.
S.
Lin
,
G.
Mengaldo
, and
R.
Maulik
, “
Online data-driven changepoint detection for high-dimensional dynamical systems
,”
Chaos
33
,
103112
(
2023
).
36.
Z.
Zhang
,
Q.
Shen
, and
X.
Wang
, “
Parameter identification framework of nonlinear dynamical systems with Markovian switching
,”
Chaos
33
,
123117
(
2023
).
37.
N.
Taghavi
, “Developing a geospatial Bayesian probabilistic method for groundwater vulnerability assessment,” Ph.D. thesis (The University of New South Wales, Canberra, 2024).
38.
L.
Fung
,
U.
Fasel
, and
M.
Juniper
, “Rapid Bayesian identification of sparse nonlinear dynamics from scarce and noisy data,” arXiv:2402.15357v1 (2024).
39.
A. A.
Klishin
,
J.
Bakarji
,
J. N.
Kutz
, and
K.
Manohar
, “Statistical mechanics of dynamical dystem identification,” arXiv:2403.01723v1 (2024).
40.
S.
Roberts
,
M.
Osborne
,
M.
Ebden
,
S.
Reece
,
N.
Gibson
, and
S.
Aigrain
, “
Gaussian processes for time-series modelling
,”
Philos. Trans. R. Soc. A
371
,
20110550
(
2013
).
41.
A.
Svensson
and
T. B.
Schön
, “
A flexible state-space model for learning nonlinear dynamical systems
,”
Automatica
80
,
189
199
(
2017
).
42.
M.
Raissi
and
G. E.
Karniadakis
, “
Hidden physics models: Machine learning of nonlinear partial differential equations
,”
J. Comput. Phys.
357
,
125
141
(
2018
).
43.
A. L.
Teckentrup
, “
Convergence of Gaussian process regression with estimated hyper-parameters and applications in Bayesian inverse problems
,”
SIAM/ASA J. Uncertainty Quantif.
8
(
4
),
1310
1337
(
2020
).
44.
S. M.
Hirsh
,
D. A.
Barajas-Solano
, and
J. N.
Kutz
, “
Sparsifying priors for Bayesian uncertainty quantification in model discovery
,”
R. Soc. Open Sci.
9
,
211823
(
2022
).
45.
A.
Rinkens
,
C. V.
Verhoosel
, and
N. O.
Jaensson
, “
Uncertainty quantification for the squeeze flow of generalized Newtonian fluids
,”
J. Non-Newtonian Fluid Mech.
322
,
105154
(
2023
).
46.
A.
Kontogiannis
,
S. V.
Elgersma
,
A. J.
Sederman
, and
M. P.
Juniper
, “
Joint reconstruction and segmentation of noisy velocity images as an inverse Navier–Stokes problem
,”
J. Fluid Mech.
944
,
A40
(
2022
).
47.
R. C.
Aster
,
B.
Borchers
, and
C. H.
Thurner
,
Parameter Estimation and Inverse Problems
, 2nd ed. (
Elsevier
,
Amsterdam, Netherlands
,
2013
).
48.
J. M.
Bardsley
,
Computational Uncertainty Quantification for Inverse Problems
(
SIAM
,
Philadelphia, PA
,
2018
).
49.
A. N.
Tikhonov
, “
Solution of incorrectly formulated problems and the regularization method
,”
Dokl. Akad. Nauk SSSR
151
,
501
504
(
1963
).
50.
A. E.
Hoerl
and
R. W.
Kennard
, “
Ridge regression: Biased estimation for nonorthogonal problems
,”
Technometrics
12
(
1
),
55
67
(
1970
).
51.
K.
Kaipio
and
E.
Somersalo
,
Statistical and Computational Inverse Problems
(
Springer Science & Business Media
,
New York
,
2005
).
52.
F.
Santosa
and
W. W.
Symes
, “
Linear inversion of band-limited reflection seismograms
,”
SIAM J. Sci. Stat. Comput.
7
(
4
),
1307
1330
(
1986
).
53.
R.
Tibshirani
, “
Regression shrinkage and selection via the Lasso
,”
J. R. Stat. Soc. B
58
(
1
),
267
288
(
1996
).
54.
J.
Stark
, “
Delay embeddings for forced systems. I. Deterministic forcing
,”
J. Nonlinear Sci.
9
,
255
332
(
1999
).
55.
T. D.
Sauer
, “
Reconstruction of shared nonlinear dynamics in a network
,”
Phys. Rev. Lett.
93
,
198701
(
2004
).
56.
W.-X.
Wang
,
R.
Yang
,
Y.-C.
Lai
,
V.
Kovanis
, and
C.
Grebogi
, “
Predicting catastrophes in nonlinear dynamical systems by compressive sensing
,”
Phys. Rev. Lett.
106
,
154101
(
2011
).
57.
C.
Yao
and
E. M.
Bollt
, “
Modeling and nonlinear parameter estimation with Kronecker product representation for coupled oscillators and spatiotemporal systems
,”
Physica D
227
,
78
(
2007
).
58.
S. L.
Brunton
,
B. W.
Brunton
,
J. L.
Proctor
,
E.
Kaiser
, and
J. N.
Kutz
, “
Koopman invariant subspaces and finite linear representations of nonlinear dynamical systems for control
,”
PLoS One
11
(
2
),
e0150171
(
2016
).
59.
S. L.
Brunton
,
B. W.
Brunton
,
J. L.
Proctor
,
E.
Kaiser
, and
J. N.
Kutz
, “
Chaos as an intermittently forced linear system
,”
Nat. Commun.
8
,
19
(
2017
).
60.
K.
Taira
,
S. L.
Brunton
,
S. T. M.
Dawson
,
C. W.
Rowley
,
T.
Colonius
,
B. J.
McKeon
,
O. T.
Schmidt
,
S.
Gordeyev
,
V.
Theofilis
, and
L. S.
Ukeiley
, “
Modal analysis of fluid flows: An overview
,”
AIAA J.
55
(
12
),
4013
4041
(
2017
).
61.
L.
Zhang
and
H.
Schaeffer
, “
On the convergence of the SINDy algorithm
,”
Multiscale Model. Simul.
17
(
3
),
948
972
(
2019
).
62.
A.
Tarantola
,
Inverse Problem Theory and Methods for Model Parameter Estimation
(
SIAM
,
Philadelphia, PA
,
2005
).
63.
C. M.
Bishop
,
Pattern Recognition and Machine Learning
(
Springer
,
New York
,
2006
).
64.
P. D.
Hoff
,
A First Course in Bayesian Statistical Methods
(
Springer
,
Dordrecht, Germany
,
2009
).
65.
L.
Tenorio
,
An Introduction to Data Analysis and Uncertainty Quantification for Inverse Problems
(
SIAM
,
Philadelphia, PA
,
2017
).
66.
R.
Bontekoe
,
What Is Your Model?: A Bayesian Tutorial
(
Bontekoe Research
,
Amsterdam, Netherlands
,
2023
).
67.
K.
Burnham
and
D.
Anderson
,
Model Selection and Multi-Model Inference
, 2nd ed. (
Springer
,
Berlin, Germany
,
2002
).
68.
J.
Skilling
, “
Nested sampling
,”
AIP Conf. Proc.
735
,
395
405
(
2004
).
69.
J.-M.
Marin
and
C.
Robert
,
Bayesian Core: A Practical Approach to Computational Bayesian Statistics
(
Springer
,
New York
,
2007
).
70.
M.
Clyde
,
M.
Çetinkaya-Rundel
,
C.
Rundel
,
D.
Banks
,
C.
Chai
, and
L.
Huang
, “An introduction to Bayesian thinking. A companion to the statistics with R course,” https://statswithr.github.io/book/_main.pdf (accessed December 2023).
71.
E. N.
Lorenz
, “
Deterministic nonperiodic flow
,”
J. Atmos. Sci.
20
(
2
),
130
141
(
1963
).
72.
S.
Lynch
,
Dynamical Systems with Applications Using MATLAB
(
Birkhäuser, Springer
,
Boston, MA
,
2004
).
73.
R. R.
Vance
, “
Predation and resource partitioning in one predator-two prey model community
,”
Am. Nat.
112
,
797
813
(
1978
).
74.
M. E.
Gilpin
, “
Spiral chaos in a predator-prey model
,”
Am. Nat.
113
(
2
),
306
308
(
1979
).
75.
A. L.
Shil’nikov
,
L. P.
Shil’nikov
, and
D. V.
Turaev
, “
Normal forms and Lorenz attractors
,”
Int. J. Bifurcation Chaos
3
(
5
),
1123
1139
(
1993
).
76.
D.
Lin
, “Safe computation of logarithm-determinant of large matrix,” MATLAB central file exchange; see https://www.mathworks.com/matlabcentral/fileexchange/22026-safe-computation-of-logarithm-determinat-of-large-matrix (accessed January 19, 2024).
77.
J.
Pearl
,
Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference
(
Morgan Kaufmann
,
San Francisco, CA
,
1988
).
78.
I.
Psorakis
,
S.
Roberts
,
M.
Ebden
, and
B.
Sheldon
, “
Overlapping community detection using Bayesian non-negative matrix factorization
,”
Phys. Rev. E
83
(
6
),
066114
(
2011
).
79.
M. R.
Hasan
and
A. R.
Baizid
, “
Bayesian estimation under different loss functions using gamma prior for the case of exponential distribution
,”
J. Sci. Res.
9
(
1
),
67
78
(
2017
).
You do not currently have access to this content.