The proposal of discrete memristors has made memristive chaotic maps based on them an important research topic. In this study, a new two-dimensional chaotic map without fixed points is constructed, and numerical simulation results display its rich dynamical behaviors. The analysis reveals the map's center inversion symmetry and Lyapunov exponent controller. The map exhibits complex dynamical behaviors, including memristor initial-boosting and single-parameter-offset boosting. Embedding the absolute value function within the memristor results in the emergence of localized boosting-free regions. Moreover, a class of multicavity transients is captured that greatly enhances the system's complexity. Ultimately, this map is implemented on the STM32 platform, demonstrating its practical applicability in potential practical application scenarios.

1.
L.
Chua
, “
Memristor—The missing circuit element
,”
IEEE Trans. Circuit Theory
18
(
5
),
507
519
(
1971
).
2.
L. O.
Chua
and
S. M.
Kang
, “
Memristive devices and systems
,”
Proc. IEEE
64
(
2
),
209
223
(
1976
).
3.
D. B.
Strukov
,
G. S.
Snider
,
D. R.
Stewart
, and
R. S.
Williams
, “
The missing memristor found
,”
Nature
453
(
7191
),
80
83
(
2008
).
4.
L. O.
Chua
, “
The fourth element
,”
Proc. IEEE
100
(
6
),
1920
1927
(
2012
).
5.
Q.
Lai
and
L.
Yang
, “
A new 3-D memristive hyperchaotic map with multi-parameter-relied dynamics
,”
IEEE Trans. Circuits Syst. II
70
(
4
),
1625
1629
(
2023
).
6.
T. C.
Lin
,
F. Y.
Huang
,
Z.
Du
, and
Y. C.
Lin
, “
Synchronization of fuzzy modeling chaotic time delay memristor-based Chua’s circuits with application to secure communication
,”
Int. J. Fuzzy Syst.
17
(
2
),
206
214
(
2015
).
7.
P.
Yao
,
H.
Wu
,
B.
Gao
,
J.
Tang
,
Q.
Zhang
,
W.
Zhang
,
J. J.
Yang
, and
H.
Qian
, “
Fully hardware-implemented memristor convolutional neural network
,”
Nature
577
(
7792
),
641
646
(
2020
).
8.
S. P.
Adhikari
,
C.
Yang
,
H.
Kim
, and
L. O.
Chua
, “
Memristor bridge synapse-based neural network and its learning
,”
IEEE Trans. Neural Netwoks Learn. Syst.
23
(
9
),
1426
1435
(
2012
).
9.
Q.
Lai
,
L.
Yang
, and
Y.
Liu
, “
Design and realization of discrete memristive hyperchaotic map with application in image encryption
,”
Chaos Solitons Fractals
165
,
112781
(
2022
).
10.
H.
Zhang
and
H.
Hu
, “
An image encryption algorithm based on a compound-coupled chaotic system
,”
Digital Signal Process.
146
,
104367
(
2024
).
11.
J.
Sun
,
X.
Zhao
,
J.
Fang
, and
Y.
Wang
, “
Autonomous memristor chaotic systems of infinite chaotic attractors and circuitry realization
,”
Nonlinear Dyn.
94
(
4
),
2879
2887
(
2018
).
12.
X.
Wang
,
M.
Gao
,
H. H. C.
Iu
, and
C.
Wang
, “
Tri-valued memristor-based hyper-chaotic system with hidden and coexistent attractors
,”
Chaos Solitons Fractals
159
,
112177
(
2022
).
13.
D.
Cafagna
and
G.
Grassi
, “
On the simplest fractional-order memristor-based chaotic system
,”
Nonlinear Dyn.
70
(
2
),
1185
1197
(
2012
).
14.
B.
Wang
,
F. C.
Zou
, and
J.
Cheng
, “
A memristor-based chaotic system and its application in image encryption
,”
Optik
154
,
538
544
(
2018
).
15.
B. C.
Bao
,
H.
Bao
,
N.
Wang
,
M.
Chen
, and
Q.
Xu
, “
Hidden extreme multistability in memristive hyperchaotic system
,”
Chaos Solitons Fractals
94
,
102
111
(
2017
).
16.
B.
Liang
,
C.
Hu
,
Z.
Tian
,
Q.
Wang
, and
C.
Jian
, “
A 3D chaotic system with multi-transient behavior and its application in image encryption
,”
Physica A
616
,
128624
(
2023
).
17.
S.
Yan
,
E.
Wang
,
B.
Gu
,
Q.
Wang
,
Y.
Ren
, and
J.
Wang
, “
Analysis and finite-time synchronization of a novel double-wing chaotic system with transient chaos
,”
Physica A
602
,
127652
(
2022
).
18.
A.
Chithra
,
T. F.
Fozin
,
K.
Srinivasan
,
E. R. M.
Kengne
,
A. T.
Kouanou
, and
I. R.
Mohamed
, “
Complex dynamics in a memristive diode bridge-based MLC circuit: Coexisting attractors and double-transient chaos
,”
Int. J. Bifurcation Chaos
31
(
03
),
2150049
(
2021
).
19.
R.
Ramamoorthy
,
K.
Rajagopal
,
G. D.
Leutcho
,
O.
Krejcar
,
H.
Namazi
, and
I.
Hussain
, “
Multistable dynamics and control of a new 4D memristive chaotic Sprott B system
,”
Chaos Solitons Fractals
156
,
111834
(
2022
).
20.
F.
Yuan
,
G.
Xing
, and
Y.
Deng
, “
Flexible cascade and parallel operations of discrete memristor
,”
Chaos Solitons Fractals
166
,
112888
(
2023
).
21.
L. K.
Kengne
,
S. S.
Muni
,
J. C.
Chedjou
, and
K.
Kyandoghere
, “
Various coexisting attractors, asymmetry analysis and multistability control in a 3D memristive jerk system
,”
Eur. Phys. J. Plus
137
(
7
),
848
(
2022
).
22.
P. P.
Singh
,
A.
Rai
, and
B. K.
Roy
, “
Memristor-based asymmetric extreme multistable hyperchaotic system with a line of equilibria, coexisting attractors, its implementation and nonlinear active-adaptive projective synchronisation
,”
Eur. Phys. J. Plus
137
(
7
),
875
(
2022
).
23.
G. Y.
Wang
and
F.
Yuan
, “
Cascade chaos and its dynamic characteristics
,”
Acta Phys. Sin.
62
(
2
),
020506
(
2013
).
24.
W.
Liu
,
K.
Sun
, and
S.
He
, “
SF-SIMM high-dimensional hyperchaotic map and its performance analysis
,”
Nonlinear Dyn.
89
(
4
),
2521
2532
(
2017
).
25.
C.
Li
and
J. C.
Sprott
, “
How to bridge attractors and repellors
,”
Int. J. Bifurcation Chaos
27
(
10
),
1750149
(
2017
).
26.
C.
Li
,
X.
Wang
, and
G.
Chen
, “
Diagnosing multistability by offset boosting
,”
Nonlinear Dyn.
90
(
2
),
1335
1341
(
2017
).
27.
C.
Ma
,
J.
Mou
,
L.
Xiong
,
S.
Banerjee
,
T.
Liu
, and
X.
Han
, “
Dynamical analysis of a new chaotic system: Asymmetric multistability, offset boosting control and circuit realization
,”
Nonlinear Dyn.
103
(
3
),
2867
2880
(
2021
).
28.
S.
Zhang
,
Y.
Zeng
,
Z.
Li
, and
C.
Zhou
, “
Hidden extreme multistability, antimonotonicity and offset boosting control in a novel fractional-order hyperchaotic system without equilibrium
,”
Int. J. Bifurcation Chaos
28
(
13
),
1850167
(
2018
).
29.
H.
Bao
,
W.
Liu
,
J.
Ma
, and
H.
Wu
, “
Memristor initial-offset boosting in memristive HR neuron model with hidden firing patterns
,”
Int. J. Bifurcation Chaos
30
(
10
),
2030029
(
2020
).
30.
M.
Chen
,
X.
Ren
,
H.
Wu
,
Q.
Xu
, and
B.
Bao
, “
Interpreting initial offset boosting via reconstitution in integral domain
,”
Chaos Solitons Fractals
131
,
109544
(
2020
).
31.
J.
Kengne
,
G. D.
Leutcho
, and
A. N. K.
Telem
, “
Reversals of period doubling, coexisting multiple attractors, and offset boosting in a novel memristive diode bridge-based hyperjerk circuit
,”
Analog Integr. Circuits Signal Process.
101
(
3
),
379
399
(
2019
).
32.
Y.
Li
,
C.
Li
,
Y.
Zhao
, and
S.
Liu
, “
Memristor-type chaotic mapping
,”
Chaos
32
(
2
),
021104
(
2022
).
33.
A.
Bayani
,
K.
Rajagopal
,
A. J. M.
Khalaf
,
S.
Jafari
,
G. D.
Leutcho
, and
J.
Kengne
, “
Dynamical analysis of a new multistable chaotic system with hidden attractor: Antimonotonicity, coexisting multiple attractors, and offset boosting
,”
Phys. Lett. A
383
(
13
),
1450
1456
(
2019
).
34.
C.
Li
,
J. C.
Sprott
,
W.
Hu
, and
Y.
Xu
, “
Infinite multistability in a self-reproducing chaotic system
,”
Int. J. Bifurcation Chaos
27
(
10
),
1750160
(
2017
).
35.
C.
Li
,
J.
Sun
,
J. C.
Sprott
, and
T.
Lei
, “
Hidden attractors with conditional symmetry
,”
Int. J. Bifurcation Chaos
30
(
14
),
2030042
(
2020
).
36.
C.
Li
,
Z.
Gu
,
Z.
Liu
,
S.
Jafari
, and
T.
Kapitaniak
, “
Constructing chaotic repellors
,”
Chaos Solitons Fractals
142
,
110544
(
2021
).
37.
H.
Bao
,
Z.
Hua
,
H.
Li
,
M.
Chen
, and
B.
Bao
, “
Discrete memristor hyperchaotic maps
,”
IEEE Trans. Circuits Syst. I
68
(
11
),
4534
4544
(
2021
).
38.
S.
Zhang
,
J.
Zheng
,
X.
Wang
, and
Z.
Zeng
, “
A novel no-equilibrium HR neuron model with hidden homogeneous extreme multistability
,”
Chaos Solitons Fractals
145
,
110761
(
2021
).
39.
S.
He
,
K.
Sun
,
Y.
Peng
, and
L.
Wang
, “
Modeling of discrete fracmemristor and its application
,”
AIP Adv.
10
(
1
),
015332
(
2020
).
40.
S.
He
,
D.
Zhan
,
H.
Wang
,
K.
Sun
, and
Y.
Peng
, “
Discrete memristor and discrete memristive systems
,”
Entropy
24
(
6
),
786
(
2022
).
41.
B.
Bao
,
H.
Li
,
H.
Wu
,
X.
Zhang
, and
M.
Chen
, “
Hyperchaos in a second-order discrete memristor-based map model
,”
Electron. Lett.
56
(
15
),
769
770
(
2020
).
42.
Y.
Peng
,
K.
Sun
, and
S.
He
, “
A discrete memristor model and its application in Hénon map
,”
Chaos Solitons Fractals
137
,
109873
(
2020
).
43.
L.
Chua
, “
If it’s pinched it’s a memristor
,”
Semicond. Sci. Technol.
29
(
10
),
104001
(
2014
).
44.
B.
Bao
,
K.
Rong
,
H.
Li
,
K.
Li
,
Z.
Hua
, and
X.
Zhang
, “
Memristor-coupled logistic hyperchaotic map
,”
IEEE Trans. Circuits Syst. II
68
(
8
),
2992
2996
(
2021
).
45.
L.
Chua
, “
Everything you wish to know about memristors but are afraid to ask
,”
Radioengineering
24
(
2
),
319
368
(
2015
).
46.
F.
Yuan
,
Y.
Li
, and
G.
Wang
, “
A universal method of chaos cascade and its applications
,”
Chaos
31
(
2
),
021102
(
2021
).
47.
M.
Alawida
,
A.
Samsudin
,
J. S.
Teh
, and
W. H.
Alshoura
, “
Digital cosine chaotic map for cryptographic applications
,”
IEEE Access
7
,
150609
150622
(
2019
).
48.
T.
Kapitaniak
and
G. A.
Leonov
, “
Multistability: Uncovering hidden attractors
,”
Eur. Phys. J. Spec. Top.
224
(
8
),
1405
1408
(
2015
).
49.
J. P.
Singh
and
B. K.
Roy
, “
Second order adaptive time varying sliding mode control for synchronization of hidden chaotic orbits in a new uncertain 4-D conservative chaotic system
,”
Trans. Inst. Meas Control
40
(
13
),
3573
3586
(
2018
).
50.
G. C.
Wu
and
D.
Baleanu
, “
Jacobian matrix algorithm for Lyapunov exponents of the discrete fractional maps
,”
Commun. Nonlinear Sci. Numer. Simul.
22
(
1–3
),
95
100
(
2015
).
51.
C.
Grebogi
,
E.
Ott
, and
J. A.
Yorke
, “
Chaotic attractors in crisis
,”
Phys. Rev. Lett.
48
(
22
),
1507
1510
(
1982
).
52.
R. K.
Upadhyay
, “
Multiple attractors and crisis route to chaos in a model food-chain
,”
Chaos Solitons Fractals
16
(
5
),
737
747
(
2003
).
53.
J.
Zhou
,
W.
Zhou
,
T.
Chu
,
Y.
Chang
, and
M.
Huang
, “
Bifurcation, intermittent chaos and multi-stability in a two-stage Cournot game with R&D spillover and product differentiation
,”
Appl. Math. Comput.
341
,
358
378
(
2019
).
54.
C.
Li
,
Y.
jiang
, and
X.
Ma
, “
On offset boosting in chaotic system
,”
Chaos Theory Appl.
3
(
2
),
47
54
(
2021
).
55.
H.
Bao
,
Z.
Hua
,
N.
Wang
,
L.
Zhu
,
M.
Chen
, and
B.
Bao
, “
Initials-boosted coexisting chaos in a 2-D sine map and its hardware implementation
,”
IEEE Trans. Ind. Inf.
17
(
2
),
1132
1140
(
2021
).
56.
B.
Bao
,
H.
Li
,
L.
Zhu
,
X.
Zhang
, and
M.
Chen
, “
Initial-switched boosting bifurcations in 2D hyperchaotic map
,”
Chaos
30
,
033107
(
2020
).
57.
S.
Zhang
,
H.
Zhang
, and
C.
Wang
, “
Memristor initial-boosted extreme multistability in the novel dual-memristor hyperchaotic maps
,”
Chaos Solitons Fractals
174
,
113885
(
2023
).
58.
S.
Gu
,
S.
He
,
H.
Wang
, and
B.
Du
, “
Analysis of three types of initial offset-boosting behavior for a new fractional-order dynamical system
,”
Chaos Solitons Fractals
143
,
110613
(
2021
).
59.
X.
Liu
,
K.
Sun
,
H.
Wang
, and
S.
He
, “
A class of novel discrete memristive chaotic map
,”
Chaos Solitons Fractals
174
,
113791
(
2023
).
60.
A. S.
de Paula
,
M. A.
Savi
, and
F. H. I.
Pereira-Pinto
, “
Chaos and transient chaos in an experimental nonlinear pendulum
,”
J. Sound Vib.
294
(
3
),
585
595
(
2006
).
61.
T.
Tél
, “
The joy of transient chaos
,”
Chaos
25
(
9
),
097619
(
2015
).
62.
L.
Ren
,
J.
Mou
,
S.
Banerjee
, and
Y.
Zhang
, “
A hyperchaotic map with a new discrete memristor model: Design, dynamical analysis, implementation and application
,”
Chaos Solitons Fractals
167
,
113024
(
2023
).
You do not currently have access to this content.