The emergence of dengue viruses in new, susceptible human populations worldwide is increasingly influenced by a combination of local and global human movements and favorable environmental conditions. While various mathematical models have explored the impact of environmental factors on dengue outbreaks, the significant role of human mobility both internationally and domestically in transmitting the disease has been less frequently addressed. In this context, we introduce a modeling framework that integrates the effects of international travel-induced imported cases, climatic conditions, and local human movements to assess the spatiotemporal dynamics of dengue transmission. Utilizing the generation matrix method, we calculate the basic reproduction number and its sensitivity to various model parameters. Through numerical simulations using data on climate, human mobility, and reported dengue cases in mainland China, our model demonstrates a good agreement with observed data upon validation. Our findings reveal that while climatic conditions are a key driver for the rapid dengue transmission, human mobility plays a crucial role in its local spread. Importantly, the model highlights the significant impact of imported cases from overseas on the initiation of dengue outbreaks and their contribution to increasing the disease incidence rate by 34.6%. Furthermore, the analysis identifies that dengue cases originating from regions, such as Cambodia and Myanmar internationally, and Guangzhou and Xishuangbanna domestically, have the potential to significantly increase the disease burden in mainland China. These insights emphasize the critical need to include data on imported cases and domestic travel patterns in disease outbreak models to improve the precision of predictions, thereby enhancing dengue prevention, surveillance, and response strategies.

1.
Abdalgader
,
T.
,
Banerjee
,
M.
, and
Zhang
,
L.
, “
Spatially weak synchronization of spreading pattern between Aedes Albopictus and dengue fever
,”
Ecol. Model.
473
,
110123
(
2022a
).
2.
Abdalgader
,
T.
,
Pedersen
,
M.
,
Ren
,
D.
,
Sun
,
G.
, and
Zhang
,
L.
, “
Trade-off between climatic and human population impacts on Aedes aegypti life history shapes its geographic distribution
,”
J. Theor. Biol.
535
,
110987
(
2022b
).
3.
Andraud
,
M.
,
Hens
,
N.
,
Marais
,
C.
, and
Beutels
,
P.
, “
Dynamic epidemiological models for dengue transmission: A systematic review of structural approaches
,”
PLoS One
7
(
11
),
e49085
(
2012
).
4.
Barmak
,
D. H.
,
Dorso
,
C. O.
, and
Otero
,
M.
, “
Modelling dengue epidemic spreading with human mobility
,”
Phys. A: Stat. Mech. Appl.
447
,
129
140
(
2016
).
5.
Bhatt
,
S.
,
Gething
,
P. W.
,
Brady
,
O. J.
et al, “
The global distribution and burden of dengue
,”
Nature
496
,
504
507
(
2013
).
6.
Bock
,
W.
and
Jayathunga
,
Y.
, “
Optimal control and basic reproduction numbers for a compartmental spatial multipatch dengue model
,”
Math. Methods Appl. Sci.
41
(
9
),
3231
3245
(
2018
).
8.
Carrington
,
L. B.
,
Seifert
,
S. N.
,
Willits
,
N. H.
et al, “
Large diurnal temperature fluctuations negatively influence Aedes aegypti (Diptera: Culicidae) life-history traits
,”
J. Med. Entomol.
50
,
43
51
(
2013a
).
9.
Carrington
,
L. B.
,
Seifert
,
S. N.
,
Armijos
,
M. V.
,
Lambrechts
,
L.
, and
Scott
,
T. W.
, “
Reduction of Aedes aegypti vector competence for dengue virus under large temperature fluctuations
,”
Am. J. Trop. Med. Hyg.
88
(
4
),
689
697
(
2013b
).
10.
Chen
,
W.-J.
,
Wei
,
H.-L.
,
Hsu
,
E.-L.
, and
Chen
,
E.-R.
, “
Vector competence of Aedes albopictus and Ae. Aegypti (Diptera: Culicidae) to dengue 1 virus on Taiwan: Development of the virus in orally and parenterally infected mosquitoes
,”
J. Med. Entomol.
30
(
3
),
524
530
(
1993
).
11.
Cheng
,
Q.
,
Jing
,
Q.
,
Spear
,
R. C.
,
Marshall
,
J. M.
,
Yang
,
Z.
, and
Gong
,
P.
, “
Climate and the timing of imported cases as determinants of the dengue outbreak in Guangzhou, 2014 evidence from a mathematical model
,”
PLoS Negl. Trop. Dis.
10
(
2
),
e0004417
(
2016
).
12.
Cheng
,
Q.
,
Jing
,
Q.
,
Spear
,
R. C.
,
Marshall
,
J. M.
,
Yang
,
Z.
, and
Gong
,
P.
, “
The interplay of climate, intervention and imported cases as determinants of the 2014 dengue outbreak in Guangzhou
,”
PLoS Negl. Trop. Dis.
11
(
6
),
e0005701
(
2017
).
13.
Colón-González
,
F. J.
,
Harris
,
I.
,
Osborn
,
T. J.
,
Steiner São Steiner
,
C.
et al, “
Limiting global-mean temperature increase to 1.5-2 °C could reduce the incidence and spatial spread of dengue fever in Latin America
,”
Proc. Natl. Acad. Sci. U.S.A.
115
(
24
),
6243
6248
(
2018
).
14.
Ehelepola
,
N. D. B.
and
Ariyaratne
,
K.
, “
The correlation between dengue incidence and diurnal ranges of temperature of Colombo district, Sri Lanka 2005-2014
,”
Glob. Health Action
9
,
32267
(
2016
).
15.
Enduri
,
M. K.
and
Jolad
,
S.
, “
Dynamics of dengue disease with human and vector mobility
,”
Spat. Spatio-Temporal Epidemiol.
25
,
57
66
(
2018
).
16.
Fan
,
J.-C.
and
Liu
,
Q.-Y.
, “
Potential impacts of climate change on dengue fever distribution using RCP scenarios in China
,”
Adv. Clim. Change Res.
10
,
1
8
(
2019
).
17.
Gómez-Gardeñes
,
J.
,
Soriano-Panos
,
D.
, and
Arenas
,
A.
, “
Critical regimes driven by recurrent mobility patterns of reaction–diffusion processes in networks
,”
Nat. Phys.
14
(
4
),
391
395
(
2018
).
18.
Guo
,
P.
,
Liu
,
T.
,
Zhang
,
Q.
,
Wang
,
L.
,
Xiao
,
J.
et al, “
Developing a dengue forecast model using machine learning: A case study in China
,”
PLoS Negl. Trop. Dis.
11
(
10
),
e0005973
(
2017
).
19.
Guo
,
X.
,
Ma
,
C.
,
Wang
,
L.
,
Zhao
,
N.
,
Liu
,
S.
, and
Xu
,
W.
, “
The impact of COVID-19 continuous containment and mitigation strategy on the epidemic of vector-borne diseases in China
,”
Parasites Vectors
15
(
1
),
78
(
2022
).
20.
Halloran
,
M. E.
and
Longini
,
I. M.
, Jr.
, “
Emerging, evolving, and established infectious diseases and interventions
,”
Science
345
(
6202
),
1292
1294
(
2014
).
21.
Hii
,
Y. L.
,
Zhu
,
H.
,
Ng
,
N.
,
Ng
,
L. C.
, and
Rocklöv
,
J.
, “
Forecast of dengue incidence using temperature and rainfall
,”
PLoS Negl. Trop. Dis.
6
(
11
),
e1908
(
2012
).
23.
Hyndman
,
R. J.
and
Koehler
,
A. B.
, “
Another look at measures of forecast accuracy
,”
Int. J. Forecast.
22
(
4
),
679
688
(
2006
).
24.
Isea
,
R.
and
Lonngren
,
K. E.
, “A preliminary mathematical model for the dynamic transmission of dengue, chikungunya and Zika,” arXiv:1606.08233 (
2016
).
25.
Jones
,
K. E.
,
Patel
,
N. G.
,
Levy
,
M. A.
,
Storeygard
,
A.
,
Balk
,
D.
et al, “
Global trends in emerging infectious diseases
,”
Nature
451
(
7181
),
990
993
(
2008
).
26.
Kiang
,
M. V.
,
Santillana
,
M.
,
Chen
,
J. T.
,
Onnela
,
J.-P.
,
Krieger
,
N.
et al, “
Incorporating human mobility data improves forecasts of dengue fever in Thailand
,”
Sci. Rep.
11
(
1
),
923
(
2021
).
27.
Kim
,
J. E.
,
Lee
,
H.
,
Lee
,
C. H.
, and
Lee
,
S.
, “
Assessment of optimal strategies in a two-patch dengue transmission model with seasonality
,”
PLoS One
12
(
3
),
e0173673
(
2017
).
28.
Li
,
R.
,
Xu
,
L.
,
Bjørnstad
,
O. N.
,
Liu
,
K.
,
Song
,
T.
et al, “
Climate-driven variation in mosquito density predicts the spatiotemporal dynamics of dengue
,”
Proc. Natl. Acad. Sci. U.S.A.
116
(
9
),
3624
3629
(
2019
).
29.
Liu
,
B.
,
Gao
,
X.
,
Ma
,
J.
,
Jiao
,
Z.
,
Xiao
,
J.
,
Hayat
,
M. A.
, and
Wang
,
H.
, “
Modeling the present and future distribution of arbovirus vectors Aedes aegypti and Aedes albopictus under climate change scenarios in Mainland China
,”
Sci. Total Environ.
664
,
203
214
(
2019
).
30.
Lun
,
X.
,
Wang
,
Y.
,
Zhao
,
C.
et al, “
Epidemiological characteristics and temporal-spatial analysis of overseas imported dengue fever cases in outbreak provinces of China, 2005–2019
,”
Infect. Dis. Poverty
11
(
1
),
12
(
2022
).
31.
Massaro
,
E.
,
Kondor
,
D.
, and
Ratti
,
C.
, “
Assessing the interplay between human mobility and mosquito borne diseases in urban environments
,”
Sci. Rep.
9
(
1
),
16911
(
2019
).
32.
McHugh
,
M. L.
, “
Interrater reliability: The kappa statistic
,”
Biochem. Med.
22
(
3
),
276
282
(
2012
).
33.
Meng
,
H.
,
Xiao
,
J.
,
Liu
,
T.
,
Zhu
,
Z.
,
Gong
,
D.
,
Kang
,
M.
,
Song
,
T.
et al, “
The impacts of precipitation patterns on dengue epidemics in Guangzhou city
,”
Int. J. Biometeorol.
65
(
11
),
1929
1937
(
2021
).
34.
Nevai
,
A. L.
and
Soewono
,
E.
, “
A model for the spatial transmission of dengue with daily movement between villages and a city
,”
Math. Med. Biol.
31
(
2
),
150
178
(
2014
).
35.
Pandey
,
A.
,
Mubayi
,
A.
, and
Medlock
,
J.
, “
Comparing vector–host and SIR models for dengue transmission
,”
Math. Biosci.
246
(
2
),
252
259
(
2013
).
36.
Quam
,
M. B.
and
Wilder-Smith
,
A.
, “
Importation index of dengue to determine the most probable origin of importation
,”
J. Travel Med.
22
(
1
),
72
(
2015a
).
37.
Quam
,
M. B.
,
Khan
,
M. D.
,
Sears
,
J.
et al, “
Estimating air travel–associated importations of dengue virus into Italy
,”
J. Travel Med.
22
(
3
),
186
193
(
2015b
).
38.
Ramadona
,
A. L.
,
Tozan
,
Y.
,
Lazuardi
,
L.
, and
Rocklöv
,
J.
, “
A combination of incidence data and mobility proxies from social media predicts the intra-urban spread of dengue in Yogyakarta, Indonesia
,”
PLoS Negl. Trop. Dis.
13
(
4
),
e0007298
(
2019
).
39.
Safiel
,
R.
,
Massawe
,
E. S.
, and
Makinde
,
O. D.
, “
Modelling the effect of screening and treatment on transmission of HIV/AIDS infection in population
,”
Am. J. Math. Stat.
2
,
75
88
(
2012
).
40.
Sang
,
S.
,
Chen
,
B.
,
Wu
,
H.
,
Yang
,
Z.
,
Di
,
B.
,
Wang
,
L.
, and
Liu
,
Q.
, “
Dengue is still an imported disease in China: A case study in Guangzhou
,”
Infect. Genet. Evol.
32
,
178
190
(
2015
).
42.
Shen
,
J. C.
,
Luo
,
L.
,
Li
,
L.
,
Jing
,
Q. L.
,
Ou
,
C. Q.
et al, “
The impacts of mosquito density and meteorological factors on dengue fever epidemics in Guangzhou, China, 2006-2014: A time-series analysis
,”
Biomed. Environ. Sci.
28
(
5
),
321
329
(
2015
).
43.
Soriano-Paños
,
D.
,
Arias-Castro
,
J. H.
,
Reyna-Lara
,
A.
,
Martínez
,
H. J.
et al, “
Vector-borne epidemics driven by human mobility
,”
Phys. Rev. Res.
2
(
1
),
013312
(
2020
).
44.
Souza-Neto
,
J. A.
,
Powell
,
J. R.
, and
Bonizzoni
,
M.
, “
Aedes aegypti vector competence studies: A review
,”
Infect. Genet. Evol.
67
,
191
209
(
2019
).
45.
Surendran
,
S. N.
,
Nagulan
,
R.
,
Tharsan
,
A.
,
Sivabalakrishnan
,
K.
, and
Ramasamy
,
R.
, “
Dengue incidence and Aedes vector collections in relation to COVID-19 population mobility restrictions
,”
Trop. Med. Infect. Dis.
7
(
10
),
287
(
2022
).
46.
Tao
,
H.
,
Wang
,
K.
,
Zhuo
,
L.
,
Li
,
X.
,
Li
,
Q.
,
Liu
,
Y.
, and
Xu
,
Y.
, “
A comprehensive framework for studying diffusion patterns of imported dengue with individual-based movement data
,”
Int. J. Geogr. Inf. Sci.
34
(
3
),
604
624
(
2020
).
47.
Thu
,
H. M.
,
Lowry
,
K.
,
Myint
,
T. T.
,
Shwe
,
T. N.
,
Han
,
A. M.
et al, “
Myanmar dengue outbreak associated with displacement of serotypes 2, 3, and 4 by dengue 1
,”
Emerg. Infect. Dis.
10
(
4
),
593
597
(
2004
).
48.
Tocto-Erazo
,
M. R.
,
Olmos-Liceaga
,
D.
, and
Montoya
,
J. A.
, “
Effect of daily periodic human movement on dengue dynamics: The case of the 2010 outbreak in Hermosillo, Mexico
,”
Appl. Math. Model.
97
,
559
567
(
2021
).
49.
Van den Driessche
,
P.
and
Watmough
,
J.
, “
Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission
,”
Math. Biosci.
180
,
29
48
(
2002
).
50.
Waldock
,
J.
,
Chandra
,
N. L.
,
Lelieveld
,
J.
,
Proestos
,
Y.
,
Michael
,
E.
et al, “
The role of environmental variables on Aedes albopictus biology and chikungunya epidemiology
,”
Pathog. Glob. Health
107
,
224
241
(
2013
).
51.
Wesolowski
,
A.
,
Qureshi
,
T.
,
Boni
,
M. F.
et al, “
Impact of human mobility on the emergence of dengue epidemics in Pakistan
,”
Proc. Natl. Acad. Sci. U.S.A.
112
(
38
),
11887
11892
(
2015
).
52.
WHO
, “Dengue Control,” (2017); see http://www.who.int/denguecontrol/disease/en/; accessed 5 May 2023.
53.
WHO
, “Dengue Situation Update 683,” (2023); see https://cdn.who.int/media/docs/default-source/wpro—documents/emergency/surveillance/dengue; accessed 30 June 2024.
54.
Wu
,
F.
,
Liu
,
Q.
,
Lu
,
L.
et al, “
Distribution of Aedes albopictus (diptera: Culicidae) in northwestern China
,”
Vector-Borne Zoonotic Dis.
11
(
8
),
1181
1186
(
2011
).
55.
Xu
,
L.
,
Stige
,
L. C.
,
Chan
,
K.-S.
,
Zhou
,
J.
,
Yang
,
J.
,
Sang
,
S.
,
Wang
,
M.
et al, “
Climate variation drives dengue dynamics
,”
Proc. Natl. Acad. Sci. U.S.A.
114
(
1
),
113
118
(
2017
).
56.
Yue
,
Y.
,
Liu
,
Q.
,
Liu
,
X.
,
Zhao
,
N.
, and
Yin
,
W.
, “
Dengue fever in Mainland China, 2005-2020: A descriptive analysis of dengue cases and aedes data
,”
Int. J. Environ. Res. Public Health
19
(
7
),
3910
(
2022
).
57.
Yue
,
Y.
,
Liu
,
X.
,
Ren
,
D.
,
Wu
,
H.
, and
Liu
,
Q.
, “
Spatial dynamics of dengue fever in mainland China, 2019
,”
Int. J. Environ. Res. Public Health
18
(
6
),
2855
(
2021
).
58.
Yue
,
Y.
,
Liu
,
X.
,
Xu
,
M.
,
Ren
,
D.
, and
Liu
,
Q.
, “
Epidemiological dynamics of dengue fever in mainland China, 2014-2018
,”
Int. J. Infect. Dis.
86
,
82
93
(
2019
).
59.
Zhang
,
J.
,
Shu
,
Y.
,
Shan
,
X.
,
Li
,
D.
,
Ma
,
D.
,
Li
,
T.
,
Long
,
S.
et al, “
Co-circulation of three dengue virus serotypes led to a severe dengue outbreak in Xishuangbanna, a border area of China, Myanmar, and Laos, in 2019
,”
Int. J. Infect. Dis.
107
,
15
17
(
2021
).
60.
Zhu
,
G.
,
Liu
,
T.
,
Xiao
,
J.
,
Zhang
,
B.
,
Song
,
T.
et al, “
Effects of human mobility, temperature and mosquito control on the spatiotemporal transmission of dengue
,”
Sci. Total Environ.
651
(
Pt 1
),
969
978
(
2019
).
You do not currently have access to this content.