This research aims to investigate the mechanisms of multistability in chaotic maps. The study commences by examining the fundamental principles governing the development of homogeneous multistability using a basic one-dimensional chain-climbing map. Findings suggest that the phase space can be segmented into distinct uniform mediums where particles exhibit consistent movement. As critical parameter values are reached, channels emerge between these mediums, resulting in deterministic chaotic diffusion. Additionally, the study delves into the topic of introducing heterogeneous factors on the formation of heterogeneous multistability in the one-dimensional map. A thorough examination of phenomena such as multistate intermittency highlights the intimate connection between specific phase transition occurrences and channel formation. Finally, by analyzing two instances—a memristive chaotic map and a hyperchaotic map—the underlying factors contributing to the emergence of multistability are scrutinized. This study offers an alternative perspective for verifying the fundamental principles of homogenous and heterogeneous multistability in complex high-dimensional chaotic maps.

1.
A. N.
Pisarchik
and
A. E.
Hramov
,
Multistability in Physical and Living Systems
(
Springer
,
2022
).
2.
D.
Choi
,
M. J.
Wishon
,
C.
Chang
,
D.
Citrin
, and
A.
Locquet
, “
Multistate intermittency on the route to chaos of a semiconductor laser subjected to optical feedback from a long external cavity
,”
Chaos
28
,
011102
(
2018
).
3.
J.
Losson
,
M. C.
Mackey
, and
A.
Longtin
, “
Solution multistability in first-order nonlinear differential delay equations
,”
Chaos
3
,
167
176
(
1993
).
4.
F. T.
Arecchi
,
R.
Meucci
,
G. P.
Puccioni
, and
J. R.
Tredicce
, “
Experimental evidence of subharmonic bifurcations, multistability, and turbulence in a q-switched gas laser
,”
Phys. Rev. Lett.
49
,
1217
1220
(
1982
).
5.
M.
Bi
,
H.
Fan
,
X.
Yan
, and
Y.
Lai
, “
Folding state within a hysteresis loop: Hidden multistability in nonlinear physical systems
,”
Phys. Rev. Lett.
132
,
137201
(
2024
).
6.
J. W.
Chopek
,
H.
Hultborn
, and
R. M.
Brownstone
, “
Multistable properties of human subthalamic nucleus neurons in Parkinson’s disease
,”
Proc. Natl. Acad. Sci. U.S.A.
116
,
24326
24333
(
2019
).
7.
N.
Knowlton
, “
Thresholds and multiple stable states in coral reef community dynamics
,”
Integr. Comput. Biol.
32
,
674
682
(
1992
).
8.
A.
Robinson
,
R.
Calov
, and
A.
Ganopolski
, “
Multistability and critical thresholds of the greenland ice sheet
,”
Nat. Clim. Change
2
,
429
432
(
2010
).
9.
U.
Feudel
and
C.
Grebogi
, “
Why are chaotic attractors rare in multistable systems?
,”
Phys. Rev. Lett.
91
,
134102
(
2003
).
10.
A. N.
Pisarchik
and
U.
Feudel
, “
Control of multistability
,”
Phys. Rep.
540
,
167
218
(
2014
).
11.
C.
Dong
,
K.
Sun
,
S.
He
, and
H.
Wang
, “
A hyperchaotic cycloid map with attractor topology sensitive to system parameters
,”
Chaos
31
,
083132
(
2021
).
12.
S.
Fang
,
S.
Zhou
,
D. V.
Yurchenko
,
T.
Yang
, and
W. H.
Liao
, “
Multistability phenomenon in signal processing, energy harvesting, composite structures, and metamaterials: A review
,”
Mech. Syst. Signal Process.
166
,
108419
(
2022
).
13.
T. M.
Baer
, “
Large-amplitude fluctuations due to longitudinal mode coupling in diode-pumped intracavity-doubled nd:yag lasers
,”
J. Opt. Soc. Am. B: Opt. Phys.
3
,
1175
1180
(
1986
).
14.
S.
Lu
,
Q.
He
, and
J.
Wang
, “
A review of stochastic resonance in rotating machine fault detection
,”
Mech. Syst. Signal Process.
116
,
230
260
(
2019
).
15.
J.
Li
,
X.
Chen
, and
Z.
He
, “
Multi-stable stochastic resonance and its application research on mechanical fault diagnosis
,”
J. Sound Vib.
332
,
5999
6015
(
2013
).
16.
P.
Kim
and
J.
Seok
, “
A multi-stable energy harvester: Dynamic modeling and bifurcation analysis
,”
J. Sound Vib.
333
,
5525
5547
(
2014
).
17.
F.
Dai
,
H.
Li
, and
S.
Du
, “
A multi-stable lattice structure and its snap-through behavior among multiple states
,”
Compos. Struct.
97
,
56
63
(
2013
).
18.
X.
Lachenal
,
P. M.
Weaver
, and
S.
Daynes
, “
Multi-stable composite twisting structure for morphing applications
,”
Proc. R. Soc. A
468
,
1230
1251
(
2012
).
19.
S.
Li
and
K.-W.
Wang
, “
Fluidic origami with embedded pressure dependent multi-stability: A plant inspired innovation
,”
J. R. Soc. Interface
12
,
20150639
(
2015
).
20.
S.
Shan
,
S.-H.
Kang
,
J. R.
Raney
,
P.
Wang
,
L.
Fang
,
F.
Candido
,
J. A.
Lewis
, and
K.
Bertoldi
, “
Multistable architected materials for trapping elastic strain energy
,”
Adv. Mater.
27
,
4296
4301
(
2015
).
21.
G.
Chen
,
D. L.
Wilcox
, and
L. L.
Howell
, “
Fully compliant double tensural tristable micromechanisms (DTTM)
,”
J. Micromech. Microeng.
19
,
025011
(
2009
).
22.
Y.
Gerson
,
S.
Krylov
,
B. R.
Ilic
, and
D.
Schreiber
, “
Design considerations of a large-displacement multistable micro actuator with serially connected bistable elements
,”
Finite Elem. Anal. Des.
49
,
58
69
(
2012
).
23.
P.
Tiwary
and
M.
Parrinello
, “
From metadynamics to dynamics
,”
Phys. Rev. Lett.
111
,
230602
(
2013
).
24.
Y.
Wang
,
W. L.
Yao
,
Z.
Xin
,
T. T.
Han
,
Z.
Wang
,
L.
Chen
,
C.
Cai
,
Y.
Li
, and
Y.
Zhang
, “
Band insulator to mott insulator transition in 1t-tas2
,”
Nat. Commun.
11
,
4215
(
2020
).
25.
E.
Bormashenko
, “
Progress in understanding wetting transitions on rough surfaces
,”
Adv. Colloid Interface
222
,
92
103
(
2015
).
26.
G. F.
de Arruda
,
G.
Petri
,
P. M.
Rodríguez
, and
Y.
Moreno
, “
Multistability, intermittency, and hybrid transitions in social contagion models on hypergraphs
,”
Nat. Commun.
14
,
1375
(
2023
).
27.
B.
Goswami
, “
Control of multistate hopping intermittency
,”
Phys. Rev. E
78
,
066208
(
2008
).
28.
P.
Faradja
and
G.
Qi
, “
Analysis of multistability, hidden chaos and transient chaos in brushless DC motor
,”
Chaos, Solitons Fractals
132
,
109606
(
2020
).
29.
M.
Wu
,
R.-Q.
Su
,
X.
Li
,
T.
Ellis
,
Y.-C.
Lai
, and
X.
Wang
, “
Engineering of regulated stochastic cell fate determination
,”
Proc. Natl. Acad. Sci. U.S.A.
110
,
10610
10615
(
2013
).
30.
L.
Wang
,
R.
Su
,
Z.
Huang
,
X.
Wang
,
W.
Wang
,
C.
Grebogi
, and
Y.
Lai
, “
A geometrical approach to control and controllability of nonlinear dynamical networks
,”
Nat. Commun.
7
,
11323
(
2016
).
31.
G.
Deco
and
V.
Jirsa
, “
Ongoing cortical activity at rest: Criticality, multistability, and ghost attractors
,”
J. Neurosci.
32
,
3366
3375
(
2012
).
32.
J. A. S.
Kelso
and
J. A. S.
Kelso
, “
Multistability and metastability: Understanding dynamic coordination in the brain
,”
Philos. Trans. R. Soc. London, Ser. B
367
,
906
918
(
2012
).
33.
M.
Scheffer
,
E. H.
van Nes
, and
R.
Vergnon
, “
Toward a unifying theory of biodiversity
,”
Proc. Natl. Acad. Sci. U.S.A.
115
,
639
641
(
2018
).
34.
J.
Jiang
,
A.
Hastings
, and
Y.-C.
Lai
, “
Harnessing tipping points in complex ecological networks
,”
J. R. Soc. Interface
16
,
20190345
(
2019
).
35.
Y.
Meng
,
J.
Jiang
,
C.
Grebogi
, and
Y.-C.
Lai
, “
Noise-enabled species recovery in the aftermath of a tipping point
,”
Phys. Rev. E
101
,
012206
(
2020
).
36.
V.
Voorsluijs
and
Y. D.
Decker
, “
Emergence of chaos in a spatially confined reactive system
,”
Physica D
335
,
1
9
(
2016
).
37.
J.
Heyman
,
D.
Lester
, and
T.
Le Borgne
, “
Scalar signatures of chaotic mixing in porous media
,”
Phys. Rev. Lett.
126
,
034505
(
2021
).
38.
D.
Müller-Bender
,
R. N.
Valani
, and
G.
Radons
, “
Pseudolaminar chaos from on-off intermittency
,”
Phys. Rev. E
107
,
014208
(
2022
).
39.
T.
Fonzin Fozin
,
A.
Tchamda
,
G.
Sivaganesh
,
K.
Srinivasan
,
Z.
Tabekoueng Njitacke
, and
A.
Mezatio
, “
Superconductivity coupling of harmonic resonant oscillators: Homogeneous and heterogeneous extreme multistability with multi-scrolls
,”
Chaos
34
,
013148
(
2024
).
40.
Y.
Li
,
C.
Li
,
S.
Zhang
,
G.
Chen
, and
Z.
Zeng
, “
A self-reproduction hyperchaotic map with compound lattice dynamics
,”
IEEE Trans. Ind. Electron.
69
,
10564
10572
(
2022
).
41.
H.
Li
,
Z.
Hua
,
H.
Bao
,
L.
Zhu
,
M.
Chen
, and
B.
Bao
, “
Two-dimensional memristive hyperchaotic maps and application in secure communication
,”
IEEE Trans. Ind. Electron.
68
,
9931
9940
(
2021
).
42.
A.
Kondi
,
V.
Constantoudis
,
P.
Sarkiris
,
K.
Ellinas
, and
E.
Gogolides
, “
Using chaotic dynamics to characterize the complexity of rough surfaces
,”
Phys. Rev. E
107
,
014206
(
2023
).
43.
A.
Bosisio
,
A.
Naimzada
, and
M.
Pireddu
, “
Proving chaos for a system of coupled logistic maps: A topological approach
,”
Chaos
34
,
033112
(
2024
).
44.
T.
Geisel
and
J.
Nierwetberg
, “
Onset of diffusion and universal scaling in chaotic systems
,”
Phys. Rev. Lett.
48
,
7
10
(
1982
).
45.
M.
Schell
and
R.
Kapral
, “
Diffusive dynamics in systems with translational symmetry: A one-dimensional-map model
,”
Phys. Rev. A
26
,
504
521
(
1982
).
46.
B. A.
Huberman
,
J. P.
Crutchfield
, and
N. H.
Packard
, “
Noise phenomena in Josephson junctions
,”
Appl. Phys. Lett.
37
,
750
752
(
1980
).
47.
D.
d’Humières
,
M. R.
Beasley
,
B. A.
Huberman
, and
A.
Libchaber
, “
Chaotic states and routes to chaos in the forced pendulum
,”
Phys. Rev. A
26
,
3483
3496
(
1982
).
48.
H. T.
Moges
,
T.
Manos
, and
C.
Skokos
, “
Anomalous diffusion in single and coupled standard maps with extensive chaotic phase spaces
,”
Physica D
431
,
133120
(
2021
).
49.
E.
Barkai
, “
Aging in subdiffusion generated by a deterministic dynamical system
,”
Phys. Rev. Lett.
90
,
104101
(
2003
).
50.
T.
Geisel
and
S.
Thomae
, “
Anomalous diffusion in intermittent chaotic systems
,”
Phys. Rev. Lett.
52
,
1936
1939
(
1984
).
51.
R.
Klages
and
J. R.
Dorfman
, “
Simple maps with fractal diffusion coefficients
,”
Phys. Rev. Lett.
74
,
387
390
(
1994
).
52.
R.
Klages
and
J. R.
Dorfman
, “
Simple deterministic dynamical systems with fractal diffusion coefficients
,”
Phys. Rev. E
59
,
5361
5383
(
1998
).
53.
S.
Kong
,
C.
Li
,
H.
Jiang
,
Q.
Lai
, and
X.
Jiang
, “
A 2D hyperchaotic map with conditional symmetry and attractor growth
,”
Chaos
31
,
043121
(
2021
).
54.
H.
Gu
,
C.
Li
,
Y.
Li
,
X.
Ge
, and
T.
Lei
, “
Various patterns of coexisting attractors in a hyperchaotic map
,”
Nonlinear Dyn.
111
,
7807
7818
(
2023
).
55.
H.
Fujisaka
and
S. K.
Grossmann
, “
Chaos-induced diffusion in nonlinear discrete dynamics
,”
Z. Phys. B: Condens. Matter
48
,
261
275
(
1982
).
56.
Y.
Sato
and
R.
Klages
, “
Anomalous diffusion in random dynamical systems
,”
Phys. Rev. Lett.
122
,
174101
(
2019
).
57.
J. C.
Sprott
and
K. E.
Chlouverakis
, “
Labyrinth chaos
,”
Int. J. Bifurc. Chaos
17
,
2097
2108
(
2007
).
58.
V.
Basios
,
C. G.
Antonopoulos
, and
A.
Latifi
, “
Labyrinth chaos: Revisiting the elegant, chaotic, and hyperchaotic walks
,”
Chaos
30
,
113129
(
2020
).
59.
V.
Basios
and
C. G.
Antonopoulos
, “
Hyperchaos & labyrinth chaos: Revisiting thomas-rössler systems
,”
J. Theor. Biol.
460
,
153
159
(
2018
).
60.
R.
Thomas
,
V.
Basios
,
M.
Eiswirth
,
T.-M.
Kruel
, and
O. E.
Rössler
, “
Hyperchaos of arbitrary order generated by a single feedback circuit, and the emergence of chaotic walks
,”
Chaos
14
,
669
74
(
2004
).
61.
C.
Li
and
J. C.
Sprott
, “
An infinite 3D quasiperiodic lattice of chaotic attractors
,”
Phys. Lett. A
382
,
581
587
(
2018
).
62.
X.
Zhang
,
Z.
Tian
,
J.
Li
, and
Z.
Cui
, “
A simple parallel chaotic circuit based on memristor
,”
Entropy
23
,
719
(
2021
).
63.
X.
Zhang
,
J.
Xu
, and
A. J.
Moshayedi
, “
Design and FPGA implementation of a hyperchaotic conservative circuit with initial offset-boosting and transient transition behavior based on memcapacitor
,”
Chaos, Solitons Fractals
179
,
114460
(
2024
).
64.
C.
Du
,
L.
Liu
,
Z.
Zhang
, and
S.
Yu
, “
A coupling method of double memristors and analysis of extreme transient behavior
,”
Nonlinear Dyn.
104
,
765
787
(
2021
).
65.
Y.
Ma
,
J.
Mou
,
J.
Lu
,
S.
Banerjee
, and
Y.
Cao
, “
A discrete memristor coupled two-dimensional generalized square hyperchaotic maps
,”
Fractals
31
,
2340136
(
2023
).
66.
H. M.
Mendonca
,
R.
Tönjes
, and
T.
Pereira
, “
Exponentially long transient time to synchronization of coupled chaotic circle maps in dense random networks
,”
Entropy
25
,
983
(
2023
).
67.
X.
Liu
,
K.
Sun
,
H.
Wang
, and
S.
He
, “
A class of novel discrete memristive chaotic map
,”
Chaos, Solitons Fractals
174
,
113791
(
2023
).
68.
N. N.
Moghadam
,
F.
Nazarimehr
,
S.
Jafari
, and
J. C.
Sprott
, “
Studying the performance of critical slowing down indicators in a biological system with a period-doubling route to chaos
,”
Physica A
544
,
123396
(
2020
).
69.
P.
Brookes
,
G.
Tancredi
,
A.
Patterson
,
J.
Rahamim
,
M.
Esposito
,
T. K.
Mavrogordatos
,
P. J.
Leek
,
E.
Ginossar
, and
M. H.
Szymańska
, “
Critical slowing down in circuit quantum electrodynamics
,”
Sci. Adv.
7
,
eabe9492
(
2019
).
70.
D.
Petkevičiūtė-Gerlach
,
I.
Timofejeva
, and
M.
Ragulskis
, “
Clocking convergence of the fractional difference logistic map
,”
Nonlinear Dyn.
100
,
3925
3935
(
2020
).
71.
D.
Müller
,
A.
Otto
, and
G.
Radons
, “
Laminar chaos
,”
Phys. Rev. Lett.
120
,
084102
(
2022
).
72.
K.
Wiesenfeld
, “
Virtual hopf phenomenon: A new precursor of period-doubling bifurcations
,”
Phys. Rev. A
32
,
1744
1751
(
1985
).
73.
A.
Ghadami
and
B. I.
Epureanu
, “
Forecasting the post-bifurcation dynamics of large-dimensional slow-oscillatory systems using critical slowing down and center space reduction
,”
Nonlinear Dyn.
88
,
415
431
(
2017
).
74.
J.
Ma
,
Y.
Xu
,
Y.
Li
,
R.
Tian
,
G.
Chen
, and
J.
Kurths
, “
Precursor criteria for noise-induced critical transitions in multi-stable systems
,”
Nonlinear Dyn.
101
,
21
35
(
2020
).
75.
D. I.
Russell
and
R. A.
Blythe
, “
Noise-induced dynamical transition in systems with symmetric absorbing states
,”
Phys. Rev. Lett.
106
,
165702
(
2011
).
76.
G.
Gyebrószki
and
G.
Csernák
, “
Twofold quantization in digital control: Deadzone crisis and switching line collision
,”
Nonlinear Dyn.
98
,
1365
1378
(
2019
).
You do not currently have access to this content.