Coupled oscillators models help us in understanding the origin of synchronization phenomenon prevalent in both natural and artificial systems. Here, we study the coupled Kuramoto oscillator model having phase lag and adaptation in higher-order interactions. We find that the type of transition to synchronization changes from the first-order to second-order through tiered synchronization depending on the adaptation parameters. Phase lag enables this transition at a lower exponent of the adaptation parameters. Moreover, an interplay between the adaptation and phase lag parameters eliminates tiered synchronization, facilitating a direct transition from the first to second-order. In the thermodynamic limit, the Ott–Antonsen approach accurately describes all stationary and (un)stable states, with analytical results matching those obtained from numerical simulations for finite system sizes.

1.
C.
Xu
,
X.
Tang
,
H.
,
K.
Alfaro-Bittner
,
S.
Boccaletti
,
M.
Perc
, and
S.
Guan
, “
Collective dynamics of heterogeneously and nonlinearly coupled phase oscillators
,”
Phys. Rev. Res.
3
,
043004
(
2021
).
2.
O. E.
Omel’chenko
and
M.
Wolfrum
, “
Is there an impact of small phase lags in the Kuramoto model?
,”
Chaos
26
,
094806
(
2016
).
3.
G.
Bianconi
, “
The mass of simple and higher-order networks
,”
J. Phys. A: Math. Theor.
57
,
015001
(
2023
).
4.
J.
Buck
, “
Synchronous rhythmic flashing of fireflies. II
,”
Q. Rev. Biol.
63
,
265
289
(
1988
).
5.
T. J.
Walker
, “
Acoustic synchrony: Two mechanisms in the snowy tree cricket
,”
Science
166
,
891
894
(
1969
).
6.
A.
Attanasi
,
A.
Cavagna
,
L.
Del Castello
,
I.
Giardina
,
A.
Jelic
,
S.
Melillo
,
L.
Parisi
,
O.
Pohl
,
E.
Shen
, and
M.
Viale
, “
Emergence of collective changes in travel direction of starling flocks from individual birds’ fluctuations
,”
J. R. Soc., Interface
12
,
20150319
(
2015
).
7.
G. V.
Osipov
,
J.
Kurths
, and
C.
Zhou
,
Synchronization in Oscillatory Networks
(
Springer Science & Business Media
,
2007
).
8.
Y.
Kuramoto
, “Self-entrainment of a population of coupled non-linear oscillators,” in International Symposium on Mathematical Problems in Theoretical Physics, 23–29 January 1975 (Springer, 1975), pp. 420–422.
9.
S. H.
Strogatz
, “
From Kuramoto to Crawford: Exploring the onset of synchronization in populations of coupled oscillators
,”
Physica D
143
,
1
20
(
2000
).
10.
L.-D.
Lord
,
P.
Expert
,
H. M.
Fernandes
,
G.
Petri
,
T. J.
Van Hartevelt
,
F.
Vaccarino
,
G.
Deco
,
F.
Turkheimer
, and
M. L.
Kringelbach
, “
Insights into brain architectures from the homological scaffolds of functional connectivity networks
,”
Front. Syst. Neurosci.
10
,
85
(
2016
).
11.
E.
Estrada
and
G. J.
Ross
, “
Centralities in simplicial complexes. Applications to protein interaction networks
,”
J. Theor. Biol.
438
,
46
60
(
2018
).
12.
J.
Grilli
,
G.
Barabás
,
M. J.
Michalska-Smith
, and
S.
Allesina
, “
Higher-order interactions stabilize dynamics in competitive network models
,”
Nature
548
,
210
213
(
2017
).
13.
P. S.
Skardal
and
A.
Arenas
, “
Abrupt desynchronization and extensive multistability in globally coupled oscillator simplexes
,”
Phys. Rev. Lett.
122
,
248301
(
2019
).
14.
P. S.
Skardal
and
A.
Arenas
, “
Higher order interactions in complex networks of phase oscillators promote abrupt synchronization switching
,”
Commun. Phys.
3
,
218
(
2020
).
15.
A. D.
Kachhvah
and
S.
Jalan
, “
Hebbian plasticity rules abrupt desynchronization in pure simplicial complexes
,”
New J. Phys.
24
,
052002
(
2022
).
16.
A. D.
Kachhvah
and
S.
Jalan
, “
First-order route to antiphase clustering in adaptive simplicial complexes
,”
Phys. Rev. E
105
,
L062203
(
2022
).
17.
B.
Moyal
,
P.
Rajwani
,
S.
Dutta
, and
S.
Jalan
, “
Rotating clusters in phase-lagged Kuramoto oscillators with higher-order interactions
,”
Phys. Rev. E
109
,
034211
(
2024
).
18.
S.
Jalan
and
A.
Suman
, “
Multiple first-order transitions in simplicial complexes on multilayer systems
,”
Phys. Rev. E
106
,
044304
(
2022
).
19.
P. K.
Pal
,
M. S.
Anwar
, and
D.
Ghosh
, “
Desynchrony induced by higher-order interactions in triplex metapopulations
,”
Phys. Rev. E
108
,
054208
(
2023
).
20.
P. K.
Pal
,
M. S.
Anwar
,
M.
Perc
, and
D.
Ghosh
, “
Global synchronization in generalized multilayer higher-order networks
,”
Phys. Rev. Res.
6
,
033003
(
2024
).
21.
D.
Biswas
and
S.
Gupta
, “
Symmetry-breaking higher-order interactions in coupled phase oscillators
,”
Chaos Soliton. Fract.
181
,
114721
(
2024
).
22.
C.
Bick
,
T.
Böhle
, and
O. E.
Omel’chenko
, “
Hopf bifurcations of twisted states in phase oscillators rings with nonpairwise higher-order interactions
,”
J. Phys.: Complexity
5
,
025026
(
2024
).
23.
S. N.
Jenifer
,
D.
Ghosh
, and
P.
Muruganandam
, “
Synchronizability in randomized weighted simplicial complexes
,”
Phys. Rev. E
109
,
054302
(
2024
).
24.
X.
Zhang
,
S.
Boccaletti
,
S.
Guan
, and
Z.
Liu
, “
Explosive synchronization in adaptive and multilayer networks
,”
Phys. Rev. Lett.
114
,
038701
(
2015
).
25.
M.
Manoranjani
,
V. R.
Saiprasad
,
R.
Gopal
,
D. V.
Senthilkumar
, and
V. K.
Chandrasekar
, “
Phase transitions in an adaptive network with the global order parameter adaptation
,”
Phys. Rev. E
108
,
044307
(
2023
).
26.
Z.
Chen
,
Z.
Zheng
, and
C.
Xu
, “
Synchronization transitions in phase oscillator populations with partial adaptive coupling
,”
Chaos
34
,
063106
(
2024
).
27.
P.
Rajwani
,
A.
Suman
, and
S.
Jalan
, “
Tiered synchronization in Kuramoto oscillators with adaptive higher-order interactions
,”
Chaos
33
,
061102
(
2023
).
28.
H.
Sakaguchi
and
Y.
Kuramoto
, “
A soluble active rotater model showing phase transitions via mutual entertainment
,”
Prog. Theor. Phys.
76
,
576
581
(
1986
).
29.
S.
Dutta
,
A.
Mondal
,
P.
Kundu
,
P.
Khanra
,
P.
Pal
, and
C.
Hens
, “
Impact of phase lag on synchronization in frustrated Kuramoto model with higher-order interactions
,”
Phys. Rev. E
108
,
034208
(
2023
).
30.
S.
Dutta
,
P.
Kundu
,
P.
Khanra
,
C.
Hens
, and
P.
Pal
, “
Perfect synchronization in complex networks with higher-order interactions
,”
Phys. Rev. E
108
,
024304
(
2023
).
31.
E.
Ott
and
T. M.
Antonsen
, “
Low dimensional behavior of large systems of globally coupled oscillators
,”
Chaos
18
,
037113
(
2008
).
32.
D.
Zou
,
Y.
Song
,
O.
Gat
,
M.
Hu
, and
P.
Grelu
, “
Synchronization of the internal dynamics of optical soliton molecules
,”
Optica
9
,
1307
1313
(
2022
).
33.
X.
Wu
,
J.
Peng
,
S.
Boscolo
,
C.
Finot
, and
H.
Zeng
, “
Synchronization, desynchronization, and intermediate regime of breathing solitons and soliton molecules in a laser cavity
,”
Phys. Rev. Lett.
131
,
263802
(
2023
).
34.
A. P.
Millán
,
J. J.
Torres
, and
G.
Bianconi
, “
Explosive higher-order Kuramoto dynamics on simplicial complexes
,”
Phys. Rev. Lett.
124
,
218301
(
2020
).
35.
R.
Berner
,
T.
Gross
,
C.
Kuehn
,
J.
Kurths
, and
S.
Yanchuk
, “
Adaptive dynamical networks
,”
Phys. Rep.
1031
,
1
59
(
2023
).
You do not currently have access to this content.