We explore adaptive link change strategies that can lead a system to network configurations that yield ordered dynamical states. We propose two adaptive strategies based on feedback from the global synchronization error. In the first strategy, the connectivity matrix changes if the instantaneous synchronization error is larger than a prescribed threshold. In the second strategy, the probability of a link changing at any instant of time is proportional to the magnitude of the instantaneous synchronization error. We demonstrate that both these strategies are capable of guiding networks to chaos suppression within a prescribed tolerance, in two prototypical systems of coupled chaotic maps. So, the adaptation works effectively as an efficient search in the vast space of connectivities for a configuration that serves to yield a targeted pattern. The mean synchronization error shows the presence of a sharply defined transition to very low values after a critical coupling strength, in all cases. For the first strategy, the total time during which a network undergoes link adaptation also exhibits a distinct transition to a small value under increasing coupling strength. Analogously, for the second strategy, the mean fraction of links that change in the network over time, after transience, drops to nearly zero, after a critical coupling strength, implying that the network reaches a static link configuration that yields the desired dynamics. These ideas can then potentially help us to devise control methods for extended interactive systems, as well as suggest natural mechanisms capable of regularizing complex networks.

1.
2.
M. A.
Nowak
,
Evolutionary Dynamics: Exploring the Equations of Life
(
Harvard University Press
,
2006
).
3.
J.
Lehnert
,
P.
Hövel
,
A.
A.Selivanov
,
A. L.
Fradkov
, and
E.
Schöll
,
Phys. Rev. E
90
,
042914
(
2014
).
4.
H.
Khalid
and
A.
Shobole
,
Electr. Power Syst. Res.
191
,
106901
(
2021
).
5.
R.
Berner
,
S.
Yanchuk
, and
E.
Schöll
,
Phys. Rev. E
103
,
042315
(
2021
).
6.
R.
Sutton
,
A.
Barto
, and
R.
Williams
,
IEEE Control Syst. Mag.
12
,
19
22
(
1992
).
7.
D.
Taylor
,
E.
Ott
, and
J. G.
Restrepo
,
Phys. Rev. E
81
,
046214
(
2010
).
8.
N.
Caporale
and
Y.
Dan
,
Annu. Rev. Neurosci.
31
,
25
(
2008
).
9.
V.
Röhr
,
R.
Berner
,
E. L.
Lameu
,
O. V.
Popovych
, and
S.
Yanchuk
,
PLoS One
14
,
e0225094
(
2019
).
10.
T.
Nishikawa
and
A. E.
Motter
,
Phys. Rev. Lett.
117
,
114101
(
2016
).
11.
S. S.
Chaurasia
and
S.
Sinha
,
Nonlinear Dyn.
87
,
159
167
(
2017
).
13.
S. S.
Chaurasia
et al.,
Chaos
31
,
103104
(
2021
).
15.
A.
Mondal
,
S.
Sinha
, and
J.
Kurths
,
Phys. Rev. E
78
,
066209
(
2008
).
16.
V.
Kohar
,
P.
Ji
,
A.
Choudhary
,
S.
Sinha
, and
J.
Kurths
,
Phys. Rev. E
90
,
022812
(
2014
).
17.
M. P. K.
Jampa
,
A.
Sonawane
,
P. M.
Gade
, and
S.
Sinha
,
Phys. Rev. E
75
,
026215
(
2007
).
18.
S.
Rajesh
et al.,
Phys. Rev. E
75
,
011906
(
2007
).
19.
V.
Kohar
and
S.
Sinha
,
Chaos Soliton. Fract.
54
,
127
134
(
2013
).
20.
A.
Choudhary
et al.,
Sci. Rep.
4
,
4308
(
2014
).
22.
A.
Roy
and
S.
Sinha
,
Chaos Soliton. Fract.
180
,
114568
(
2024
).
23.
C.
Zhou
and
J.
Kurths
,
Phys. Rev. Lett.
96
,
164102
(
2006
).
24.
T.
Gross
,
C. J.
Dommar
,
D.
Lima
, and
B.
Blasius
,
Phys. Rev. Lett.
96
,
208701
(
2006
).
25.
J.
Crutchfield
and
K.
Kaneko
, in Directions in Chaos, edited by B. L. Hao (World Scientific, Singapore, 1987).
27.
H.
Chaté
and
P.
Manneville
,
Prog. Theor. Phys.
87
,
1
60
(
1992
).
28.
G.
Grégoire
and
H.
Chaté
,
Phys. Rev. Lett.
92
,
025702
(
2004
).
29.
D. J.
Watts
and
S. H.
Strogatz
,
Nature
393
,
440
(
1998
).
30.
J. J.
Collins
and
C. C.
Chow
,
Nature
393
,
409
(
1998
).
31.
J. J.
Hopfield
and
A. V.
Herz
,
Proc. Natl. Acad. Sci. U.S.A.
92
,
6655
(
1995
).
32.
P.
Gade
and
C. K.
Hu
,
Phys. Rev. E
62
,
6409
(
2000
).
33.
K.
Christensen
et al.,
Phys. Rev. Lett.
81
,
2380
(
1998
).
34.
M.
Barthélémy
and
L. A.
Nunes Amaral
,
Phys. Rev. Lett.
82
,
3180
(
1999
).
35.
F.
Bagnoli
and
F.
Cecconi
,
Phys. Lett. A
282
,
9
(
2001
).
36.
M.
Barahona
and
L. M.
Pecora
,
Phys. Rev. Lett.
89
,
054101
(
2002
).
37.
S.
Sinha
,
R.
Ramaswamy
, and
J.
Subba Rao
,
Physica D
43
,
118
(
1990
).
38.
A.
Garfinkel
,
M. L.
Spano
,
W. L.
Ditto
, and
J. N.
Weiss
,
Science
257
,
1230
(
1992
).
39.
P.
Parmananda
,
P.
Sherard
,
J. W.
Rollins
, and
H. D.
Dewald
,
Phys. Rev. E
47
,
R3003
(
1993
).
40.
S. J.
Schiff
,
K.
Jerger
,
D. H.
Duong
,
T.
Chang
,
M. L.
Spano
, and
W. L.
Ditto
,
Nature
370
,
615
620
(
1994
).
41.
S.
Sinha
and
N.
Gupte
,
Phys. Rev. E
58
,
R5221
(
1998
).
42.
W.
Wang
,
I. Z.
Kiss
, and
J. L.
Hudson
,
Chaos
10
,
248
(
2000
).
43.
K.
Murali
and
S.
Sinha
,
Phys. Rev. E
68
,
016210
(
2003
).
You do not currently have access to this content.