When playing a self-sustained reed instrument (such as the clarinet), initial acoustical transients (at the beginning of a note) are known to be of crucial importance. Nevertheless, they have been mostly overlooked in the literature on musical instruments. We investigate here the dynamic behavior of a simple model of reed instrument with a time-varying blowing pressure accounting for attack transients performed by the musician. In practice, this means studying a one-dimensional non-autonomous dynamical system obtained by slowly varying in time the bifurcation parameter (the blowing pressure) of the corresponding autonomous systems, i.e., whose bifurcation parameter is constant. In this context, the study focuses on the case for which the time-varying blowing pressure crosses the bistability domain (with the coexistence of a periodic solution and an equilibrium) of the corresponding autonomous model. Considering the time-varying blowing pressure as a new (slow) state variable, the considered non-autonomous one-dimensional system becomes an autonomous two-dimensional fast–slow system. In the bistability domain, the latter has attracting manifolds associated with two stable branches of the bifurcation diagram of the system with constant parameter. In the framework of the geometric singular perturbation theory, we show that a single solution of the two-dimensional fast–slow system can be used to describe the global system behavior. Indeed, this allows us to determine, depending on the initial conditions and rate of change of the blowing pressure, which manifold is approached when the bistability domain is crossed and to predict whether a sound is produced during transient as a function of the musician’s control.

1.
T.
Colinot
,
P.
Guillemain
,
C.
Vergez
,
J.-B.
Doc
, and
P.
Sanchez
, “
Multiple two-step oscillation regimes produced by the alto saxophone
,”
J. Acoust. Soc. Am.
147
,
2406
2413
(
2020
).
2.
J.-B.
Doc
,
C.
Vergez
, and
S.
Missoum
, “
A minimal model of a single-reed instrument producing quasi-periodic sounds
,”
Acta Acust. Acust.
100
,
543
554
(
2014
).
3.
E.
Gourc
,
C.
Vergez
,
P.-O.
Mattei
, and
S.
Missoum
, “
Nonlinear dynamics of the wolf tone production
,”
J. Sound Vib.
516
,
116463
(
2022
).
4.
R.
Mattéoli
,
J.
Gilbert
,
S.
Terrien
,
J.-P.
Dalmont
,
C.
Vergez
,
S.
Maugeais
, and
E.
Brasseur
, “
Diversity of ghost notes in tubas, euphoniums and saxhorns
,”
Acta Acust.
6
,
32
(
2022
).
5.
S.
Terrien
,
C.
Vergez
,
P.
de La Cuadra
, and
B.
Fabre
, “
Experimental analysis of non-periodic sound regimes in flute-like musical instruments
,”
J. Acoust. Soc. Am.
149
,
2100
2108
(
2021
).
6.
A.
Ernoult
and
B.
Fabre
, “
Temporal characterization of experimental recorder attack transients
,”
J. Acoust. Soc. Am.
141
,
383
394
(
2017
).
7.
M.
Pàmies-Vilà
,
A.
Hofmann
, and
V.
Chatziioannou
, “
Analysis of tonguing and blowing actions during clarinet performance
,”
Front. Psychol.
9
,
366042
(
2018
).
8.
E.
Saldanha
and
J. F.
Corso
, “
Timbre cues and the identification of musical instruments
,”
J. Acoust. Soc. Am.
36
,
2021
2026
(
1964
).
9.
A.
Ernoult
,
B.
Fabre
,
S.
Terrien
, and
C.
Vergez
, “Experimental study of attack transients in flute-like instruments,” in International Symposium on Musical Acoustics (DC/ConfOrg, 2014).
10.
B.
Bergeot
,
A.
Almeida
,
C.
Vergez
, and
B.
Gazengel
, “
Prediction of the dynamic oscillation threshold in a clarinet model with a linearly increasing blowing pressure
,”
Nonlinear Dyn.
73
,
521
534
(
2013
).
11.
B.
Bergeot
,
A.
Almeida
,
C.
Vergez
, and
B.
Gazengel
, “
Prediction of the dynamic oscillation threshold in a clarinet model with a linearly increasing blowing pressure: Influence of noise
,”
Nonlinear Dyn.
74
,
591
605
(
2013
).
12.
B.
Bergeot
and
C.
Vergez
, “
Analytical prediction of delayed hopf bifurcations in a simplified stochastic model of reed musical instruments
,”
Nonlinear Dyn.
107
,
3291
3312
(
2022
).
13.
B.
Bergeot
,
A.
Almeida
,
C.
Vergez
,
B.
Gazengel
, and
D.
Ferrand
, “
Response of an artificially blown clarinet to different blowing pressure profiles
,”
J. Acoust. Soc. Am.
135
,
479
490
(
2014
).
14.
T.
Colinot
,
C.
Vergez
,
P.
Guillemain
, and
J.-B.
Doc
, “
Multistability of saxophone oscillation regimes and its influence on sound production
,”
Acta Acust.
5
,
33
(
2021
).
15.
U.
Feudel
,
A. N.
Pisarchik
, and
K.
Showalter
, “
Multistability and tipping: From mathematics and physics to climate and brain—Minireview and preface to the focus issue
,”
Chaos
28
,
033501
(
2018
).
16.
P. D.
Ritchie
,
H.
Alkhayuon
,
P. M.
Cox
, and
S.
Wieczorek
, “
Rate-induced tipping in natural and human systems
,”
Earth Syst. Dyn.
14
,
669
683
(
2023
).
17.
P.
Ashwin
,
S.
Wieczorek
,
R.
Vitolo
, and
P.
Cox
, “
Tipping points in open systems: Bifurcation, noise-induced and rate-dependent examples in the climate system
,”
Philos. Trans. R. Soc. A: Math. Phys. Eng. Sci.
370
,
1166
1184
(
2012
).
18.
E.
Benô
, “Dynamic bifurcations,” in Lecture Notes in Mathematics (Springer, Actes de la condérence tenue à Luminy, Marseilles, France, du 5 au 10 mars 1990), Vol. 1493.
19.
S.
Wieczorek
,
P.
Ashwin
,
C. M.
Luke
, and
P. M.
Cox
, “
Excitability in ramped systems: The compost-bomb instability
,”
Proc. R. Soc. A: Math., Phys. Eng. Sci.
467
,
1243
1269
(
2011
).
20.
P. E.
O’Keeffe
and
S.
Wieczorek
, “
Tipping phenomena and points of no return in ecosystems: Beyond classical bifurcations
,”
SIAM J. Appl. Dyn. Syst.
19
,
2371
2402
(
2020
).
21.
N.
Berglund
, “
Dynamic bifurcations: Hysteresis, scaling laws and feedback control
,”
Prog. Theor. Phys. Supplement
139
,
325
336
(
2000
).
22.
C.
Kuehn
,
Multiple Time Scale Dynamics
, 1st ed. (
Springer International Publishing
,
2015
), Chap. 12.
23.
J. R.
Tredicce
,
G. L.
Lippi
,
P.
Mandel
,
B.
Charasse
,
A.
Chevalier
, and
B.
Picqué
, “
Critical slowing down at a bifurcation
,”
Am. J. Phys.
72
,
799
809
(
2004
).
24.
P.
Ashwin
,
C.
Perryman
, and
S.
Wieczorek
, “
Parameter shifts for nonautonomous systems in low dimension: Bifurcation- and rate-induced tipping
,”
Nonlinearity
30
,
2185
2210
(
2017
).
25.
H. M.
Alkhayuon
and
P.
Ashwin
, “
Rate-induced tipping from periodic attractors: Partial tipping and connecting orbits
,”
Chaos
28
,
033608
(
2018
).
26.
S.
Wieczorek
,
C.
Xie
, and
C. K. R. T.
Jones
, “
Compactification for asymptotically autonomous dynamical systems: Theory, applications and invariant manifolds
,”
Nonlinearity
34
,
2970
(
2021
).
27.
N.
Fenichel
, “
Geometric singular perturbation theory for ordinary differential equations
,”
J. Differ. Equ.
98
,
53
98
(
1979
).
28.
S.
Wieczorek
,
C.
Xie
, and
P.
Ashwin
, “
Rate-induced tipping: Thresholds, edge states and connecting orbits
,”
Nonlinearity
36
,
3238
3293
(
2023
).
29.
E.
O’Sullivan
,
K.
Mulchrone
, and
S.
Wieczorek
, “
Rate-induced tipping to metastable Zombie fires
,”
Proc. R. Soc. A: Math. Phys. Eng. Sci.
479
,
20220647
(
2023
).
30.
A.
Chaigne
and
J.
Kergomard
, “Acoustics of musical instruments,” in Modern Acoustics and Signal Processing (Springer-Verlag New York, 2016).
31.
C. K.
Jones
, “Geometric singular perturbation theory,” in Dynamical Systems, Lecture Notes in Mathematics, edited by R. Johnson (Springer Berlin Heidelberg, 1995), Vol. 1609, pp. 44–118.
32.
Normally, a musical note corresponds to a periodic solution. However, the instrument model we are going to study is averaged; therefore, for it, a musical note is non-zero equilibrium corresponding to the amplitude of the periodic solution of the original model.
33.
J. P.
Dalmont
,
J.
Gilbert
, and
S.
Ollivier
, “
Nonlinear characteristics of single-reed instruments: Quasistatic volume flow and reed opening measurements
,”
J. Acoust. Soc. Am.
114
,
2253
2262
(
2003
).
34.
A.
Hirschberg
, “Aero-acoustics of wind instruments,” in Mechanics of Musical Instruments by A. Hirschberg/ J. Kergomard/ G. Weinreich, Vol. 335 of CISM Courses and Lectures (Springer-Verlag, 1995), Chap. 7, pp. 291–361.
35.
J.
Gilbert
,
S.
Maugeais
, and
C.
Vergez
, “
Minimal blowing pressure allowing periodic oscillations in a simplified reed musical instrument model: Bouasse-Benade prescription assessed through numerical continuation
,”
Acta Acust.
4
,
12
(
2020
).
36.
Wolfram Research, Inc.
, “Mathematica, Version 13.2,” Champaign, IL, 2022.
37.
N.
Berglund
and
B.
Gentz
, “Noise-induced phenomena in slow-fast dynamical systems: A sample-paths approach,” in Probability and Its Applications (New York) (Springer-Verlag London Ltd., 2006). (In this reference, the critical manifold is called slow manifold.)
38.
C.
Kuehn
, “Multiple time scale dynamics,” in Applied Mathematical Sciences, 1st ed., edited by S. Antman (Springer International Publishing, 2015), Vol. 191.
39.
Normally means that each point of M 0 must be hyperbolic only in the the direction normal (i.e., non tangent) to itself (see, e.g., Definition 2.3.4 and the text below of Ref. 38).
40.
N.
Berglund
and
B.
Gentz
, “
Stochastic dynamic bifurcations and excitability
,” in
Stochastic Methods in Neuroscience
(Oxford University Press,
2010
).
41.
To be understood in the sense of the Hausdorff distance (see, e.g., Chap. 3 of Ref. 38).
42.
M ε is called invariant (locally in I) under the flow, if ( x 0 , y 0 ) M ε implies that ( x ( t ) , y ( t ) ) M ε as long as y ( t ) I holds.
43.
Remember that for a ( 1 , 1 )-fast–slow system, the critical manifold represents the equilibrium solutions of the corresponding autonomous system, i.e., the fast subsystem (10). Therefore, the bifurcation diagram shown in Fig. 1 depicts also the critical manifold of the fast-slow system (3) [or (4)].
44.
M.
Wechselberger
,
J.
Mitry
, and
J.
Rinzel
, “Canard theory and excitability,” in Nonautonomous Dynamical Systems in the Life Sciences, edited by P. E. Kloeden and C. Pötzsche (Springer International Publishing, 2013), pp. 89–132.
45.
The behavior of a ( 1 , 1 )-fast–slow system near a non-hyperbolic point of the critical manifold can be analytically studied by means of the methodology developed by Berglund et al.,37 which consists of determining the scaling law of the system, i.e., the dependance of the system in the parameter ε in the neighborhood of the non-hyperbolic point. This is not the purpose of the present paper because this analytical method cannot be extended for higher dimensional phase spaces.
46.
N.
Berglund
and
D.
Landon
, “
Mixed-mode oscillations and interspike interval statistics in the stochastic FitzHugh–Nagumo model
,”
Nonlinearity
25
,
2303
2335
(
2012
).
47.
R.
Seydel
, “Practical bifurcation and stability analysis,” in Interdisciplinary Applied Mathematics, 3rd ed. (Springer, 2010), Vol. 5.
48.
H.-D.
Chiang
,
M.
Hirsch
, and
F.
Wu
, “
Stability regions of nonlinear autonomous dynamical systems
,”
IEEE Trans. Autom. Control
33
,
16
27
(
1988
).
49.
J.
Guckenheimer
and
C.
Kuehn
, “
Computing slow manifolds of saddle type
,”
SIAM J. Appl. Dyn. Syst.
8
,
854
879
(
2009
).
50.
S.
Farjami
,
V.
Kirk
, and
H. M.
Osinga
, “
Computing the stable manifold of a saddle slow manifold
,”
SIAM J. Appl. Dyn. Syst.
17
,
350
379
(
2018
).
51.
A periodic solution of an m-dimensional fast subsystem is associated to m Floquet multipliers, but one is always unity (see Lemma 7.3 of Ref. 47).
52.
A. H.
Benade
, Fundamentals of musical acoustics, edited by O. U. Press (Oxford University Press, 1976).
53.
N. H.
Fletcher
and
T. D.
Rossing
,
The Physics of Musical Instruments
(
Springer-Verlag
,
New York
,
1991
).
54.
N.
Fletcher
, “
Nonlinear theory of musical wind instruments
,”
Appl. Acoust.
30
,
85
115
(
1990
).
55.
F.
Silva
,
J.
Kergomard
,
C.
Vergez
, and
J.
Gilbert
, “
Interaction of reed and acoustic resonator in clarinet-like systems
,”
J. Acoust. Soc. Am.
124
,
3284
3295
(
2008
).
56.
T. A.
Wilson
and
G. S.
Beavers
, “
Operating modes of the clarinet
,”
J. Acoust. Soc. Am.
56
,
653
658
(
1974
).
57.
J.
Backus
, “
Small-vibration theory of the clarinet
,”
J. Acoust. Soc. Am.
35
,
305
313
(
1963
).
58.
S.
Ollivier
,
J. P.
Dalmont
, and
J.
Kergomard
, “
Idealized models of reed woodwinds. Part 1 : Analogy with the bowed string
,”
Acta Acust. Acust.
90
,
1192
1203
(
2004
).
59.
J. A.
Sanders
,
F.
Verhulst
, and
J. A.
Murdock
, “Averaging methods in nonlinear dynamical systems,” in Applied Mathematical Sciences No. v. 59, 2nd ed. (Springer, New York, 2007).
You do not currently have access to this content.