Climate networks based on surface air temperature data are analyzed to identify distinct signatures of tropical cyclones, which appear in the Indian Ocean. These networks, which are percolating networks, show an abrupt phase transition in the order parameter and the susceptibility during cyclonic events. The behavior seen is compared for the months October–November 2016, when three successive cyclones, viz., cyclone Kyant, cyclone Nada, and cyclone Vardah, were seen, and compared with a year where a single cyclone, cyclone Ockhi, was seen in December 2017. All these cyclones were seen in the Bay of Bengal. The microtransitions, i.e., the locations of jumps in the order parameter, for these two cases show distinct patterns. The signatures of the cyclones can be seen in other quantities like the node degrees and their geographic distributions and other network characterizers. We also compare these with a cyclone, cyclone Ashoba (2015), seen in the Arabian Sea where cyclones are rarer. The networks also show the signatures of precursor behavior, which has implications for further analysis.

1.
J.
Meng
,
J.
Fan
,
Y.
Ashkenazy
, and
S.
Havlin
, “
Percolation framework to describe El Niño conditions
,”
Chaos
27
,
035807
(
2017
).
2.
K.
Yamasaki
,
A.
Gozolchiani
, and
S.
Havlin
, “
Climate networks around the globe are significantly affected by El Niño
,”
Phys. Rev. Lett.
100
,
228501
(
2008
).
3.
A. A.
Tsonis
,
K. L.
Swanson
, and
P. J.
Roebber
, “
What do networks have to do with climate?
,”
Bull. Am. Meteorol. Soc.
87
,
585
(
2006
).
4.
J.
Fan
,
J.
Meng
,
J.
Ludescher
,
X.
Chen
,
Y.
Askenazy
,
J.
Kurths
,
S.
Havlin
, and
J.
Schellnhuber
,
Phys. Rep.
896
,
1
84
(
2021
).
5.
N.
Malik
,
B.
Bookhagen
,
N.
Marwan
, and
J.
Kurths
, “
Analysis of spatial and temporal extreme monsoonal rainfall over South Asia using complex networks
,”
Clim. Dyn.
39
,
971
(
2012
).
6.
V.
Stolbova
,
E.
Surovyatkina
,
B.
Bookhagen
, and
J.
Kurths
, “
Tipping elements of the Indian monsoon: Prediction of onset and withdrawal
,”
Geophys. Res. Lett.
43
,
3982
, (
2016
).
7.
M.
Gelbrecht
,
N.
Boers
, and
J.
Kurths
, “
A complex network representation of wind flows
,”
Chaos
27
,
035808
(
2017
).
8.
R.
Sonone
and
N.
Gupte
, “
Precursors of the El Niño phenomenon: A climate network analysis
,”
Phys. Rev. E
103
,
L040301
(
2021
).
9.
R.
Sonone
,
R.
Saha
, and
N.
Gupte
, “
Signatures of climatic phenomena in climate networks: Cyclones, El Niño and La Niña
,”
Ind. Acad. Sci. Conf. Ser.
3
,
0017
(
2020
).
10.
S.
Gupta
,
N.
Boers
,
F.
Pappenberger
, and
J.
Kurths
, “
Complex network approach for detecting tropical cyclones
,”
Clim. Dyn.
57
,
3355
(
2021
).
11.
S.
De
,
V.
Rajasekharan Unni
,
S.
Gupta
, and
R.
Ravindran
, “
Study of interaction and complete merging of binary cyclones using complex networks
,”
Chaos
33
,
013129
(
2023
).
12.
R.
Rotunno
and
K. A.
Emanuel
, “
An air and sea interaction theory for tropical cyclones. Part II: Evolutionary study using a nonhydrostatic axisymmetric numerical model
,”
J. Atmos. Sci.
44
,
542
(
1987
).
13.
A.
Saunders
and
M. T.
Montgomery
, A closer look at vortical hot towers within a tropical cyclogenesis environment (Department of Atmospheric Science Blue Book, Colorado State University, 2004), Vol. 752, p.
105
.
14.
N.
Gupte
,
A.
Roy
, and
R.
Sonone
, “
Microtransitions in hierarchical and climate networks
,”
Ind. Acad. Sci. Conf. Ser.
2
,
1
(
2019
).
15.
The European Centre for Medium-Range Weather Forecasts (ECMWF) is an independent intergovernmental organisation (http://apps.ecmwf.int/datasets/data/interim-full-daily/levtype=pl/).
16.
W.
Chen
,
M.
Schr‘oder
,
R. M.
D’Souza
,
D.
Sornette
, and
J.
Nagler
, “
Microtransition cascades to percolation
,”
Phys. Rev. Lett.
112
,
155701
(
2014
).
17.
A.
Roy
and
N.
Gupte
, “
Microtransitions in a 2d load-bearing network
,”
Phys. Lett. A
383
,
967
(
2019
).
18.
A.
Roy
and
N.
Gupte
, “Microtransitions in a 2d load bearing hierarchical network,” in Proceedings of the 5th International Conference on Theory and Applications in Nonlinear Dynamics, Understanding Complex Systems, edited by V. In, P. Longhini, and A. Palacios (Springer, 2019), pp. 106–117. doi: .
19.
North Indian Ocean Best Track Data, Joint Typhoon Warning Center, USA.
20.
D.
Zhou
,
A.
Gozolchiani
,
Y.
Ashkenazy
, and
S.
Havlin
, “
Teleconnection paths via climate network direct link detection
,”
Phys. Rev. Lett.
115
,
268501
(
2015
).
21.
K. K.
Osuri
,
U. C.
Mohanty
,
A.
Routray
,
M.
Mohapatra
, and
D.
Niyogi
, “
Real-time track prediction of tropical cyclones over the north Indian Ocean using the ARW model
,”
J. Appl. Meteorol. Climatol.
52
(
11
),
2476
(
2013
).
22.
K. J.
Tory
,
M. T.
Montgomery
, and
N. E.
Davidson
, “
Prediction and diagnosis of tropical cyclone formation in an NWP system. Part I: The critical role of vortex enhancement in deep convection
,”
J. Atmos. Sci.
63
(
12
),
3077
(
2006
).
23.
K. J.
Tory
,
M. T.
Montgomery
,
N. E.
Davidson
, and
J. D.
Kepert
, “
Prediction and diagnosis of tropical cyclone formation in an NWP system. Part II: A diagnosis of tropical cyclone formation
,”
J. Atmos. Sci.
63
(
12
),
3091
(
2006
).
24.
K. J.
Tory
,
N. E.
Davidson
, and
M. T.
Montgomery
, “
Prediction and diagnosis of tropical cyclone formation in an NWP system. Part III: Diagnosis of developing and nondeveloping storms
,”
J. Atmos. Sci.
64
(
9
),
3195
(
2007
).
You do not currently have access to this content.