Community structure plays a crucial role in realistic networks and different communities can be created by groups of interest and activity events, and exploring the impact of community properties on collective dynamics is an active topic in the field of network science. Here, we propose a new coupled model with different time scales for online social networks and offline epidemic spreading networks, in which community structure is added into online social networks to investigate its role in the interacting dynamics between information diffusion and epidemic spreading. We obtain the analytical equations of epidemic threshold by MMC (Microscopic Markov Chain) method and conduct a large quantities of numerical simulations using Monte Carlo simulations in order to verify the accuracy of the MMC method, and more valuable insights are also obtained. The results indicate that an increase in the probability of the mobility of an individual can delay the spread of epidemic-related information in the network, as well as delaying the time of the peak of the infection density in the network. However, an increase in the contact ability of mobile individuals produces a facilitating effect on the spread of epidemics. Finally, it is also found that the stronger the acceptance of an individual to information coming from a different community, the lower the infection density in the network, which suggests that it has an inhibitory effect on the disease spreading.

1.
D. M.
Morens
and
A. S.
Fauci
, “
Emerging infectious diseases: Threats to human health and global stability
,”
PLoS Pathog
9
,
e1003467
(
2013
).
2.
D. E.
Bloom
and
D.
Cadarette
, “
Infectious disease threats in the twenty-first century: Strengthening the global response
,”
Front. Immunol.
10
,
549
(
2019
).
3.
R. S.
Gottfried
,
Black Death
(
Simon and Schuster
,
2010
).
4.
A.
Trilla
,
G.
Trilla
, and
C.
Daer
, “
The 1918 ‘spanish flu’ in Spain
,”
Clin. Infect. Dis.
47
,
668
673
(
2008
).
5.
Y.
Bao
,
Y.
Sun
,
S.
Meng
,
J.
Shi
, and
L.
Lu
, “
2019-nCoV epidemic: Address mental health care to empower society
,”
The Lancet
395
,
e37
e38
(
2020
).
6.
Z.
Yu
,
J.
Zhang
,
Y.
Zhang
,
X.
Cong
,
X.
Li
, and
A. M.
Mostafa
, “
Mathematical modeling and simulation for COVID-19 with mutant and quarantined strategy
,”
Chaos Solitons Fractals
181
,
114656
(
2024
).
7.
W. O.
Kermack
and
A. G.
McKendrick
, “
A contribution to the mathematical theory of epidemics
,”
Proc. R. Soc. London. Ser. A Contain. Pap. Math. Phys. Character
115
,
700
721
(
1927
).
8.
L.
Wang
and
J. T.
Wu
, “
Characterizing the dynamics underlying global spread of epidemics
,”
Nat. Commun.
9
,
218
(
2018
).
9.
D. J.
Daley
and
J.
Gani
,
Epidemic Modelling: An Introduction
(
Cambridge University Press
,
2001
), p.
15
.
10.
A.
Grabowski
and
R. A.
Kosiński
, “
Epidemic spreading in a hierarchical social network
,”
Phys. Rev. E
70
,
031908
(
2004
).
11.
M. J.
Keeling
and
K. T.
Eames
, “
Networks and epidemic models
,”
J. R. Soc. Interface
2
,
295
307
(
2005
).
12.
S.
Funk
,
M.
Salathé
, and
V. A.
Jansen
, “
Modelling the influence of human behaviour on the spread of infectious diseases: A review
,”
J. R. Soc. Interface
7
,
1247
1256
(
2010
).
13.
H. W.
Hethcote
, “
The mathematics of infectious diseases
,”
SIAM Rev.
42
,
599
653
(
2000
).
14.
D. J.
Watts
and
S. H.
Strogatz
, “
Collective dynamics of ‘small-world’ networks
,”
Nature
393
,
440
442
(
1998
).
15.
R.
Pastor-Satorras
and
A.
Vespignani
, “
Epidemic spreading in scale-free networks
,”
Phys. Rev. Lett.
86
,
3200
3203
(
2001
).
16.
Y.
Wang
,
D.
Chakrabarti
,
C.
Wang
, and
C.
Faloutsos
, “Epidemic spreading in real networks: An eigenvalue viewpoint,” in 22nd International Symposium on Reliable Distributed Systems, 2003. Proceedings. (IEEE, 2003), pp. 25–34.
17.
Y.
Gang
,
Z.
Tao
,
W.
Jie
,
F.
Zhong-Qian
, and
W.
Bing-Hong
, “
Epidemic spread in weighted scale-free networks
,”
Chin. Phys. Lett.
22
,
510
(
2005
).
18.
C.
Moore
and
M. E. J.
Newman
, “
Epidemics and percolation in small-world networks
,”
Phys. Rev. E
61
,
5678
5682
(
2000
).
19.
C.
Granell
,
S.
Gómez
, and
A.
Arenas
, “
Competing spreading processes on multiplex networks: Awareness and epidemics
,”
Phys. Rev. E
90
,
012808
(
2014
).
20.
Z.-K.
Zhang
,
C.
Liu
,
X.-X.
Zhan
,
X.
Lu
,
C.-X.
Zhang
, and
Y.-C.
Zhang
, “
Dynamics of information diffusion and its applications on complex networks
,”
Phys. Rep.
651
,
1
34
(
2016
).
21.
S.
Boccaletti
,
G.
Bianconi
,
R.
Criado
,
C.
del Genio
,
J.
Gómez-Gardeñes
,
M.
Romance
,
I.
Sendiña-Nadal
,
Z.
Wang
, and
M.
Zanin
, “
The structure and dynamics of multilayer networks
,”
Phys. Rep.
544
,
1
122
(
2014
).
22.
M.
De Domenico
,
C.
Granell
,
M. A.
Porter
, and
A.
Arenas
, “
The physics of spreading processes in multilayer networks
,”
Nat. Phys.
12
,
901
906
(
2016
).
23.
H.
Guo
,
Z.
Wang
,
S.
Sun
, and
C.
Xia
, “
Interplay between epidemic spread and information diffusion on two-layered networks with partial mapping
,”
Phys. Lett. A
398
,
127282
(
2021
).
24.
X.
Wu
and
H.
Bao
, “
The impact of positive and negative information on SIR-like epidemics in delayed multiplex networks
,”
Chaos
32
,
113141
(
2022
).
25.
Q.
Yin
,
Z.
Wang
,
C.
Xia
, and
C. T.
Bauch
, “
Impact of co-evolution of negative vaccine-related information, vaccination behavior and epidemic spreading in multilayer networks
,”
Commun. Nonlinear Sci. Numer. Simul.
109
,
106312
(
2022
).
26.
Y.
Wu
,
Z.
Zhang
,
L.
Song
, and
C.
Xia
, “
Global stability analysis of two strains epidemic model with imperfect vaccination and immunity waning in a complex network
,”
Chaos Solitons Fractals
179
,
114414
(
2024
).
27.
Q.
Sun
,
Z.
Wang
,
D.
Zhao
,
C.
Xia
, and
M.
Perc
, “
Diffusion of resources and their impact on epidemic spreading in multilayer networks with simplicial complexes
,”
Chaos Solitons Fractals
164
,
112734
(
2022
).
28.
X.
Chen
,
K.
Gong
,
R.
Wang
,
S.
Cai
, and
W.
Wang
, “
Effects of heterogeneous self-protection awareness on resource-epidemic coevolution dynamics
,”
Appl. Math. Comput.
385
,
125428
(
2020
).
29.
C.
Xia
,
Z.
Wang
,
C.
Zheng
,
Q.
Guo
,
Y.
Shi
,
M.
Dehmer
, and
Z.
Chen
, “
A new coupled disease-awareness spreading model with mass media on multiplex networks
,”
Inf. Sci.
471
,
185
200
(
2019
).
30.
A.
Anwar
,
M.
Malik
,
V.
Raees
, and
A.
Anwar
, “
Role of mass media and public health communications in the COVID-19 pandemic
,”
Cureus
12
,
e10453
(
2020
).
31.
Z.
Wang
,
C.
Xia
,
Z.
Chen
, and
G.
Chen
, “
Epidemic propagation with positive and negative preventive information in multiplex networks
,”
IEEE Trans. Cybern.
51
,
1454
1462
(
2021
).
32.
F.
Pinotti
,
F.
Ghanbarnejad
,
P.
Hövel
, and
C.
Poletto
, “
Interplay between competitive and cooperative interactions in a three-player pathogen system
,”
R. Soc. Open Sci.
7
,
190305
(
2020
).
33.
M. E.
Newman
, “
Threshold effects for two pathogens spreading on a network
,”
Phys. Rev. Lett.
95
,
108701
(
2005
).
34.
C.
Stegehuis
,
R.
Van Der Hofstad
, and
J. S.
Van Leeuwaarden
, “
Epidemic spreading on complex networks with community structures
,”
Sci. Rep.
6
,
29748
(
2016
).
35.
J.
Cao
,
Z.
Bu
,
Y.
Wang
,
H.
Yang
,
J.
Jiang
, and
H.-J.
Li
, “
Detecting prosumer-community groups in smart grids from the multiagent perspective
,”
IEEE Trans. Syst. Man, Cybern. Syst.
49
,
1652
1664
(
2019
).
36.
Z.
Bu
,
H.-J.
Li
,
C.
Zhang
,
J.
Cao
,
A.
Li
, and
Y.
Shi
, “
Graph K-means based on leader identification, dynamic game, and opinion dynamics
,”
IEEE Trans. Knowl. Data Eng.
32
,
1348
1361
(
2020
).
37.
M.
Salathé
and
J. H.
Jones
, “
Dynamics and control of diseases in networks with community structure
,”
PLoS Comput. Biol.
6
,
e1000736
(
2010
).
38.
H.
Zhang
,
Z.-H.
Guan
,
T.
Li
,
X.-H.
Zhang
, and
D.-X.
Zhang
, “
A stochastic SIR epidemic on scale-free network with community structure
,”
Physica A
392
,
974
981
(
2013
).
39.
Z.
Liu
and
B.
Hu
, “
Epidemic spreading in community networks
,”
Europhys. Lett.
72
,
315
(
2005
).
40.
X.
Wu
and
Z.
Liu
, “
How community structure influences epidemic spread in social networks
,”
Physica A
387
,
623
630
(
2008
).
41.
N.
Perra
,
B.
Gonçalves
,
R.
Pastor-Satorras
, and
A.
Vespignani
, “
Activity driven modeling of time varying networks
,”
Sci. Rep.
2
,
469
(
2012
).
42.
Q.
Guo
,
Y.
Lei
,
X.
Jiang
,
Y.
Ma
,
G.
Huo
, and
Z.
Zheng
, “
Epidemic spreading with activity-driven awareness diffusion on multiplex network
,”
Chaos
26
,
043110
(
2016
).
43.
Y.
Wang
,
J.
Cao
,
Z.
Bu
,
J.
Wu
, and
Y.
Wang
, “
Dual structural consistency preserving community detection on social networks
,”
IEEE Trans. Knowl. Data Eng.
35
,
11301
11315
(
2023
).
44.
H.
Yang
,
C.
Gu
,
M.
Tang
,
S.-M.
Cai
, and
Y.-C.
Lai
, “
Suppression of epidemic spreading in time-varying multiplex networks
,”
Appl. Math. Model.
75
,
806
818
(
2019
).
45.
S.
Zhang
,
D.
Zhao
,
C.
Xia
, and
J.
Tanimoto
, “
Impact of simplicial complexes on epidemic spreading in partially mapping activity-driven multiplex networks
,”
Chaos
33
,
063128
(
2023
).
46.
G.
Ren
and
X.
Wang
, “
Epidemic spreading in time-varying community networks
,”
Chaos
24
,
023116
(
2014
).
47.
X.-L.
Peng
,
M.
Small
,
X.-J.
Xu
, and
X.
Fu
, “
Temporal prediction of epidemic patterns in community networks
,”
New J. Phys.
15
,
113033
(
2013
).
You do not currently have access to this content.