Phase space reconstruction (PSR) methods allow for the analysis of low-dimensional data with methods from dynamical systems theory, but their application to prediction models, such as those from machine learning (ML), is limited. Therefore, we here present a model adaptive phase space reconstruction (MAPSR) method that unifies the process of PSR with the modeling of the dynamical system. MAPSR is a differentiable PSR based on time-delay embedding and enables ML methods for modeling. The quality of the reconstruction is evaluated by the prediction loss. The discrete-time signal is converted into a continuous-time signal to achieve a loss function, which is differentiable with respect to the embedding delays. The delay vector, which stores all potential embedding delays, is updated along with the trainable parameters of the model to minimize prediction loss. Thus, MAPSR does not rely on any threshold or statistical criterion for determining the dimension and the set of delay values for the embedding process. We apply the MAPSR method to uni- and multivariate time series stemming from chaotic dynamical systems and a turbulent combustor. We find that for the Lorenz system, the model trained with the MAPSR method is able to predict chaotic time series for nearly seven to eight Lyapunov time scales, which is found to be much better compared to other PSR methods [AMI-FNN (average mutual information-false nearest neighbor) and PECUZAL (Pecora-Uzal) methods]. For the univariate time series from the turbulent combustor, the long-term cumulative prediction error of the MAPSR method for the regime of chaos stays between other methods, and for the regime of intermittency, MAPSR outperforms other PSR methods.

1.
J. A. Y.
Kathleen
,
T.
Alligood
, and
T. D.
Sauer
,
Chaos: An Introduction to Dynamical Systems
(
Springer
,
1997
).
2.
T.
Mullin
, “
Finite-dimensional dynamics in Taylor-Couette flow
,”
IMA J. Appl. Math.
46
,
109
119
(
1991
).
3.
F. N.
Madden
and
T.
Mullin
, “
An experimental observation of low-dimensional dynamics in an open channel flow
,”
Phys. Fluids
7
,
2364
2374
(
1995
).
4.
H.
Whitney
, “
Differentiable manifolds
,”
Ann. Math.
37
,
645
680
(
1936
).
5.
R.
Mañé
, “On the dimension of the compact invariant sets of certain non-linear maps,” in
Dynamical Systems and Turbulence, Warwick 1980: Proceedings of a Symposium Held at the University of Warwick 1979/80
(Springer, Berlin, Heidelberg, 1981), pp. 230–242.
6.
F.
Takens
, “Detecting strange attractors in turbulence,” in
Dynamical Systems and Turbulence, Warwick 1980: Proceedings of a Symposium Held at the University of Warwick 1979/80
(Springer, Berlin, Heidelberg, 1981), pp. 366–381.
7.
D.
Broomhead
and
G. P.
King
, “
Extracting qualitative dynamics from experimental data
,”
Physica D
20
,
217
236
(
1986
).
8.
B.
Mann
,
F.
Khasawneh
, and
R.
Fales
, “
Using information to generate derivative coordinates from noisy time series
,”
Commun. Nonlinear Sci. Numer. Simul.
16
,
2999
3004
(
2011
).
9.
J. F.
Gibson
,
J.
Doyne Farmer
,
M.
Casdagli
, and
S.
Eubank
, “
An analytic approach to practical state space reconstruction
,”
Physica D
57
,
1
30
(
1992
).
10.
N. H.
Packard
,
J. P.
Crutchfield
,
J. D.
Farmer
, and
R. S.
Shaw
, “
Geometry from a time series
,”
Phys. Rev. Lett.
45
,
712
716
(
1980
).
11.
M.
Casdagli
,
S.
Eubank
,
J.
Farmer
, and
J.
Gibson
, “
State space reconstruction in the presence of noise
,”
Physica D
51
,
52
98
(
1991
).
12.
T.
Sauer
,
J. A.
Yorke
, and
M.
Casdagli
, “
Embedology
,”
J. Stat. Phys.
65
,
579
616
(
1991
).
13.
L. C.
Uzal
,
G. L.
Grinblat
, and
P. F.
Verdes
, “
Optimal reconstruction of dynamical systems: A noise amplification approach
,”
Phys. Rev. E
84
,
016223
(
2011
).
14.
M. T.
Rosenstein
,
J. J.
Collins
, and
C. J.
De Luca
, “
Reconstruction expansion as a geometry-based framework for choosing proper delay times
,”
Physica D
73
,
82
98
(
1994
).
15.
A.
Eftekhari
,
H. L.
Yap
,
M. B.
Wakin
, and
C. J.
Rozell
, “
Stabilizing embedology: Geometry-preserving delay-coordinate maps
,”
Phys. Rev. E
97
,
022222
(
2018
).
16.
M. B.
Kennel
,
R.
Brown
, and
H. D. I.
Abarbanel
, “
Determining embedding dimension for phase-space reconstruction using a geometrical construction
,”
Phys. Rev. A
45
,
3403
3411
(
1992
).
17.
M. B.
Kennel
and
H. D. I.
Abarbanel
, “
False neighbors and false strands: A reliable minimum embedding dimension algorithm
,”
Phys. Rev. E
66
,
026209
(
2002
).
18.
L.
Cao
, “
Practical method for determining the minimum embedding dimension of a scalar time series
,”
Physica D
110
,
43
50
(
1997
).
19.
R.
Hegger
and
H.
Kantz
, “
Improved false nearest neighbor method to detect determinism in time series data
,”
Phys. Rev. E
60
,
4970
4973
(
1999
).
20.
A.
Krakovská
,
K.
Mezeiová
, and
H.
Budácová
, “
Use of false nearest neighbours for selecting variables and embedding parameters for state space reconstruction
,”
J. Complex Syst.
2015
,
1
12
.
21.
K. H.
Kraemer
,
G.
Datseris
,
J.
Kurths
,
I. Z.
Kiss
,
J. L.
Ocampo-Espindola
, and
N.
Marwan
, “
A unified and automated approach to attractor reconstruction
,”
New J. Phys.
23
,
033017
(
2021
).
22.
L. M.
Pecora
,
T. L.
Carroll
, and
J. F.
Heagy
, “
Statistics for mathematical properties of maps between time series embeddings
,”
Phys. Rev. E
52
,
3420
3439
(
1995
).
23.
L. M.
Pecora
,
L.
Moniz
,
J.
Nichols
, and
T. L.
Carroll
, “
A unified approach to attractor reconstruction
,”
Chaos
17
,
013110
(
2007
).
24.
K. H.
Kraemer
,
M.
Gelbrecht
,
I.
Pavithran
,
R. I.
Sujith
, and
N.
Marwan
, “
Optimal state space reconstruction via Monte Carlo decision tree search
,”
Nonlinear Dyn.
108
,
1525
1545
(
2022
).
25.
E.
Tan
,
S.
Algar
,
D.
Corrêa
,
M.
Small
,
T.
Stemler
, and
D.
Walker
, “
Selecting embedding delays: An overview of embedding techniques and a new method using persistent homology
,”
Chaos
33
,
032101
(
2023
).
26.
S. L.
Brunton
,
B. W.
Brunton
,
J. L.
Proctor
,
E.
Kaiser
, and
J. N.
Kutz
, “
Chaos as an intermittently forced linear system
,”
Nat. Commun.
8
,
19
(
2017
).
27.
I.
Mezić
, “
Analysis of fluid flows via spectral properties of the Koopman operator
,”
Annu. Rev. Fluid Mech.
45
,
357
378
(
2013
).
28.
J.
Bakarji
,
K.
Champion
,
J. N.
Kutz
, and
S. L.
Brunton
, “Discovering governing equations from partial measurements with deep delay autoencoders,” arXiv:2201.05136 (2022).
29.
S. L.
Brunton
,
J. L.
Proctor
, and
J. N.
Kutz
, “
Discovering governing equations from data by sparse identification of nonlinear dynamical systems
,”
Proc. Natl. Acad. Sci. U.S.A.
113
,
3932
3937
(
2016
).
30.
J. D.
Farmer
and
J. J.
Sidorowich
, “
Predicting chaotic time series
,”
Phys. Rev. Lett.
59
,
845
848
(
1987
).
31.
M.
Casdagli
, “
Nonlinear prediction of chaotic time series
,”
Physica D
35
,
335
356
(
1989
).
32.
G.
Sugihara
and
R. M.
May
, “
Nonlinear forecasting as a way of distinguishing chaos from measurement error in time series
,”
Nature
344
,
734
741
(
1990
).
33.
H.
Kantz
and
T.
Schreiber
,
Nonlinear Time Series Analysis
, 2nd ed. (
Cambridge University Press
,
2003
).
34.
J.
Isensee
,
G.
Datseris
, and
U.
Parlitz
, “
Predicting spatio-temporal time series using dimension reduced local states
,”
J. Nonlinear Sci.
30
,
713
735
(
2020
).
35.
J. M.
Dhadphale
,
V. R.
Unni
,
A.
Saha
, and
R. I.
Sujith
, “
Neural ODE to model and prognose thermoacoustic instability
,”
Chaos
32
,
013131
(
2022
).
36.
R. I.
Sujith
and
S. A.
Pawar
,
Thermoacoustic Instability: A Complex Systems Perspective
(
Springer International Publishing
,
2021
).
37.
R. T. Q.
Chen
,
Y.
Rubanova
,
J.
Bettencourt
, and
D. K.
Duvenaud
, “
Neural ordinary differential equations
,”
Adv. Neural Inf. Process. Syst.
31
,
6571
6583
(
2018
).
38.
J.
Pathak
,
B.
Hunt
,
M.
Girvan
,
Z.
Lu
, and
E.
Ott
, “
Model-free prediction of large spatiotemporally chaotic systems from data: A reservoir computing approach
,”
Phys. Rev. Lett.
120
,
024102
(
2018
).
39.
M.
Lukoševičius
and
H.
Jaeger
, “
Reservoir computing approaches to recurrent neural network training
,”
Comput. Sci. Rev.
3
,
127
149
(
2009
).
40.
X.-Y.
Duan
,
X.
Ying
,
S.-Y.
Leng
,
J.
Kurths
,
W.
Lin
, and
H.-F.
Ma
, “
Embedding theory of reservoir computing and reducing reservoir network using time delays
,”
Phys. Rev. Res.
5
,
L022041
(
2023
).
41.
Y.
Rubanova
,
R. T. Q.
Chen
, and
D. K.
Duvenaud
, “Latent ordinary differential equations for irregularly-sampled time series,” in Advances in Neural Information Processing Systems, edited by H. Wallach, H. Larochelle, A. Beygelzimer, F. d’Alché-Buc, E. Fox, and R. Garnett (Curran Associates, Inc., 2019), Vol. 32.
42.
E.
Dupont
,
A.
Doucet
, and
Y. W.
Teh
, “Augmented neural ODEs,” in Advances in Neural Information Processing Systems, edited by H. Wallach, H. Larochelle, A. Beygelzimer, F. d’Alché-Buc, E. Fox, and R. Garnett (Curran Associates, Inc., 2019), Vol. 32.
43.
H.
Kantz
and
T.
Schreiber
,
Nonlinear Time Series Analysis
, 2nd ed. (
Cambridge University Press
,
2003
).
44.
H.
Kurt
,
S.
Maxwell
, and
H.
White
, “
Multilayer feedforward networks are universal approximators
,”
Neural Netw.
2
,
359
366
(
1989
).
45.
F.
Rosenblatt
et al.,
Principles of Neurodynamics: Perceptrons and the Theory of Brain Mechanisms
(
Spartan Books
,
Washington, DC
,
1962
), Vol. 55.
46.
D. E.
Rumelhart
,
G. E.
Hinton
, and
R. J.
Williams
, “
Learning representations by back-propagating errors
,”
Nature
323
,
533
536
(
1986
).
47.
A. G.
Baydin
,
B. A.
Pearlmutter
,
A. A.
Radul
, and
J. M.
Siskind
, “Automatic differentiation in machine learning: A survey,” arXiv:1502.05767 (2018).
48.
T.
Tieleman
,
G.
Hinton
et al., “
Lecture 6.5-rmsprop: Divide the gradient by a running average of its recent magnitude
,”
COURSERA: Neural Netw. Mach. Learn.
4
,
26
31
(
2012
).
49.
E. N.
Lorenz
, “
Deterministic nonperiodic flow
,”
J. Atmos. Sci.
20
,
130
141
(
1963
).
50.
E.
Hairer
,
G.
Wanner
, and
S. P.
Nørsett
, Solving Ordinary Differential Equations I: Nonstiff Problems, 2nd ed., Springer Series in Computational Mathematics Vol. 8 (Springer, 1993).
51.
J.
Garland
and
E.
Bradley
, “
Prediction in projection
,”
Chaos
25
,
123108
(
2015
).
52.
E.
Bradley
and
H.
Kantz
, “
Nonlinear time-series analysis revisited
,”
Chaos
25
,
097610
(
2015
).
53.
V. R.
Unni
and
R. I.
Sujith
, “
Multifractal characteristics of combustor dynamics close to lean blowout
,”
J. Fluid Mech.
784
,
30
50
(
2015
).
54.
V.
Nair
,
G.
Thampi
,
S.
Karuppusamy
,
S.
Gopalan
, and
R. I.
Sujith
, “
Loss of chaos in combustion noise as a precursor of impending combustion instability
,”
Int. J. Spray Combust. Dyn.
5
,
273
290
(
2013
).
55.
J.
Tony
,
E. A.
Gopalakrishnan
,
E.
Sreelekha
, and
R. I.
Sujith
, “
Detecting deterministic nature of pressure measurements from a turbulent combustor
,”
Phys. Rev. E
92
,
062902
(
2015
).
56.
V.
Nair
,
G.
Thampi
, and
R. I.
Sujith
, “
Intermittency route to thermoacoustic instability in turbulent combustors
,”
J. Fluid Mech.
756
,
470
487
(
2014
).
57.
C. D.
Young
and
M. D.
Graham
, “
Deep learning delay coordinate dynamics for chaotic attractors from partial observable data
,”
Phys. Rev. E
107
,
034215
(
2023
).
58.
H.
Hentschel
and
I.
Procaccia
, “
The infinite number of generalized dimensions of fractals and strange attractors
,”
Physica D
8
,
435
444
(
1983
).
59.
M.
Ding
,
C.
Grebogi
,
E.
Ott
,
T.
Sauer
, and
J. A.
Yorke
, “
Estimating correlation dimension from a chaotic time series: When does plateau onset occur?
,”
Physica D
69
,
404
424
(
1993
).
60.
M.
Ding
,
C.
Grebogi
,
E.
Ott
,
T.
Sauer
, and
J. A.
Yorke
, “
Plateau onset for correlation dimension: When does it occur?
,”
Phys. Rev. Lett.
70
,
3872
3875
(
1993
).
61.
P.
Grassberger
and
I.
Procaccia
, “
Measuring the strangeness of strange attractors
,”
Physica D
9
,
189
208
(
1983
).
You do not currently have access to this content.