We explore large populations of phase oscillators interacting via random coupling functions. Two types of coupling terms, the Kuramoto–Daido coupling and the Winfree coupling, are considered. Under the assumption of statistical independence of the phases and the couplings, we derive reduced averaged equations with effective non-random coupling terms. As a particular example, we study interactions defined via the coupling functions that have the same shape but possess random coupling strengths and random phase shifts. While randomness in coupling strengths just renormalizes the interaction, a distribution of the phase shifts in coupling reshapes the coupling function.

1.
A. T.
Winfree
, “
Biological rhythms and the behavior of populations of coupled oscillators
,”
J. Theor. Biol.
16
,
15
42
(
1967
).
2.
Y.
Kuramoto
, “Self-entrainment of a population of coupled nonlinear oscillators,” in International Symposium on Mathematical Problems in Theoretical Physics, Springer Lecture Notes in Physics Vol. 39, edited by H. Araki (New York, 1975), p. 420.
3.
S. H.
Strogatz
and
I.
Stewart
, “
Coupled oscillators and biological synchronization
,”
Sci. Am.
269
,
68
75
(
1993
).
4.
A.
Pikovsky
,
M.
Rosenblum
, and
J.
Kurths
,
Synchronization: A Universal Concept in Nonlinear Sciences
(
Cambridge University Press
,
Cambridge
,
2001
).
5.
L.
Glass
and
M. C.
Mackey
,
From Clocks to Chaos: The Rhythms of Life
(
Princeton University Press
,
Princeton, NJ
,
1988
).
6.
G.
Buzsáki
,
Rhythms of the Brain
(
Oxford University Press
,
Oxford
,
2006
).
7.
A.
Daffertshofer
and
B.
Pietras
, “
Phase synchronization in neural systems
,” in
Snergetics. Encyclopedia of Complexity and Systems Science Series
, edited by A. Hutt, and H. Haken (Springer, New York, 2020), pp. 221–233.
8.
A. C.
Kalloniatis
, “
From incoherence to synchronicity in the network Kuramoto model
,”
Phys. Rev. E
82
,
066202
(
2010
).
9.
H.
Chiba
,
G. S.
Medvedev
, and
M. S.
Mizuhara
, “
Bifurcations in the Kuramoto model on graphs
,”
Chaos
28
,
073109
(
2018
).
10.
R.
Juhász
,
J.
Kelling
, and
G.
Ódor
, “
Critical dynamics of the Kuramoto model on sparse random networks
,”
J. Stat. Mech.: Theory Exp.
2019
,
053403
.
11.
K.
Park
,
S. W.
Rhee
, and
M. Y.
Choi
, “
Glass synchronization in the network of oscillators with random phase shifts
,”
Phys. Rev. E
57
,
5030
5035
(
1998
).
12.
L. A.
Smirnov
and
A.
Pikovsky
, “
Dynamics of oscillator populations globally coupled with distributed phase shifts
,”
Phys. Rev. Lett.
132
,
107401
(
2024
).
13.
S.
Shinomoto
and
Y.
Kuramoto
, “
Phase transitions in active rotator systems
,”
Prog. Theor. Phys.
75
,
1105
1110
(
1986
).
14.
H.
Sakaguchi
,
S.
Shinomoto
, and
Y.
Kuramoto
, “
Phase transitions and their bifurcation analysis in a large population of active rotators with mean-field coupling
,”
Prog. Theor. Phys.
79
,
600
607
(
1988
).
15.
V. V.
Klinshov
,
S. Y.
Kirillov
,
V. I.
Nekorkin
, and
M.
Wolfrum
, “
Noise-induced dynamical regimes in a system of globally coupled excitable units
,”
Chaos
31
,
083103
(
2021
).
16.
H.
Tanaka
,
A.
Lichtenberg
, and
S.
Oishi
, “
First order phase transition resulting from finite inertia in coupled oscillator systems
,”
Phys. Rev. Lett.
78
,
2104
2107
(
1997
).
17.
H.
Hong
,
M. Y.
Choi
,
J.
Yi
, and
K.-S.
Soh
, “
Inertia effects on periodic synchronization in a system of coupled oscillators
,”
Phys. Rev. E
59
,
353
363
(
1999
).
18.
V. O.
Munyaev
,
L. A.
Smirnov
,
V. A.
Kostin
,
G. V.
Osipov
, and
A.
Pikovsky
, “
Analytical approach to synchronous states of globally coupled noisy rotators
,”
New J. Phys.
22
,
023036
(
2020
).
19.
V. O.
Munyayev
,
M. I.
Bolotov
,
L. A.
Smirnov
,
G. V.
Osipov
, and
I.
Belykh
, “
Cyclops states in repulsive Kuramoto networks: The role of higher-order coupling
,”
Phys. Rev. Lett.
130
,
107201
(
2023
).
20.
G.
Filatrella
,
A. H.
Nielsen
, and
N. F.
Pedersen
, “
Analysis of a power grid using a Kuramoto-like model
,”
Eur. Phys. J. B
61
,
485
491
(
2008
).
21.
F.
Dorfler
and
F.
Bullo
, “
Synchronization and transient stability in power networks and nonuniform Kuramoto oscillators
,”
SIAM J. Control Optim.
50
,
1616
1642
(
2012
).
22.
Y.
Kuramoto
,
Chemical Oscillations, Waves and Turbulence
(
Springer
,
Berlin
,
1984
).
23.
E. M.
Izhikevich
, “
Phase models with explicit time delays
,”
Phys. Rev. E
58
,
905
908
(
1998
).
24.
V.
Vlasov
,
E. E. N.
Macau
, and
A.
Pikovsky
, “
Synchronization of oscillators in a Kuramoto-type model with generic coupling
,”
Chaos
24
,
023120
(
2014
).
25.
E.
Ott
and
T. M.
Antonsen
, “
Low dimensional behavior of large systems of globally coupled oscillators
,”
Chaos
18
,
037113
(
2008
).
26.
I. V.
Tyulkina
,
D. S.
Goldobin
,
L. S.
Klimenko
, and
A.
Pikovsky
, “
Dynamics of noisy oscillator populations beyond the Ott-Antonsen ansatz
,”
Phys. Rev. Lett.
120
,
264101
(
2018
).
27.
L. L.
Bonilla
,
C. J. P.
Vicente
, and
R.
Spigler
, “
Time-periodic phases in populations of nonlinearly coupled oscillators with bimodal frequency distributions
,”
Phys. D
113
,
79
97
(
1998
).
28.
E. A.
Martens
,
E.
Barreto
,
S. H.
Strogatz
,
E.
Ott
,
P.
So
, and
T. M.
Antonsen
, “
Exact results for the Kuramoto model with a bimodal frequency distribution
,”
Phys. Rev. E
79
,
026204
(
2009
).
29.
A.
Campa
, “
Phase diagram of noisy systems of coupled oscillators with a bimodal frequency distribution
,”
J. Phys. A: Math. Theor.
53
,
154001
(
2020
).
30.
V. A.
Kostin
,
V. O.
Munyaev
,
G. V.
Osipov
, and
L. A.
Smirnov
, “
Synchronization transitions and sensitivity to asymmetry in the bimodal Kuramoto systems with Cauchy noise
,”
Chaos
33
,
083155
(
2023
).
31.
C. W.
Gardiner
,
Handbook of Stochastic Methods
(
Springer
,
Berlin
,
1996
).
32.
S.
Calogero
, “
Exponential convergence to equilibrium for kinetic Fokker-Planck equations
,”
Comm. Part. Diff. Eqs.
37
,
1357
1390
(
2012
).
33.
S.
Zelik
, private communication (2023).
34.
B. A.
Earnshaw
and
J. P.
Keener
, “
Global asymptotic stability of solutions of nonautonomous master equations
,”
SIAM J. Appl. Dyn. Syst.
9
,
220
237
(
2010
).
35.
H.
Daido
, “
Quasientrainment and slow relaxation in a population of oscillators with random and frustrated interactions
,”
Phys. Rev. Lett.
68
,
1073
1076
(
1992
).
36.
A.
Pikovsky
and
F.
Bagnoli
, “
Dynamics of oscillator populations with disorder in the coupling phase shifts
,”
New J. Phys.
26
,
023054
(
2024
).
You do not currently have access to this content.