Neural networks are popular data-driven modeling tools that come with high data collection costs. This paper proposes a residual-based multipeaks adaptive sampling (RMAS) algorithm, which can reduce the demand for a large number of samples in the identification of stochastic dynamical systems. Compared to classical residual-based sampling algorithms, the RMAS algorithm achieves higher system identification accuracy without relying on any hyperparameters. Subsequently, combining the RMAS algorithm and neural network, a few-shot identification (FSI) method for stochastic dynamical systems is proposed, which is applied to the identification of a vegetation biomass change model and the Rayleigh–Van der Pol impact vibration model. We show that the RMAS algorithm modifies residual-based sampling algorithms and, in particular, reduces the system identification error by 76% with the same sample sizes. Moreover, the surrogate model accurately predicts the first escape probability density function and the P bifurcation behavior in the systems, with the error of less than 1.59 × 10 2. Finally, the robustness of the FSI method is validated.

1.
Q.
Liu
,
Y.
Xu
,
J.
Kurths
, and
X.
Liu
, “
Complex nonlinear dynamics and vibration suppression of conceptual airfoil models: A state-of-the-art overview
,”
Chaos
32
,
062101
(
2022
).
2.
J.
Kou
and
W.
Zhang
, “
Data-driven modeling for unsteady aerodynamics and aeroelasticity
,”
Prog. Aerosp. Sci.
125
,
100725
(
2021
).
3.
S.
Brunton
,
B.
Noack
, and
P.
Koumoutsakos
, “
Machine learning for fluid mechanics
,”
Annu. Rev. Fluid Mech.
52
,
477
508
(
2020
).
4.
S. L.
Brunton
,
J.
Nathan Kutz
,
K.
Manohar
, et al., “
Data-driven aerospace engineering: Reframing the industry with machine learning
,”
AIAA J.
59
,
2820
2847
(
2021
).
5.
J.-P.
Noël
and
G.
Kerschen
, “
Nonlinear system identification in structural dynamics: 10 more years of progress
,”
Mech. Syst. Signal Process.
83
,
2
35
(
2017
).
6.
J.-S.
Pei
and
S.
Masri
, “
Demonstration and validation of constructive initialization method for neural networks to approximate nonlinear functions in engineering mechanics applications
,”
Nonlinear Dyn.
79
,
2099
2119
(
2015
).
7.
H. V. H.
Ayala
and
L.
dos Santos Coelho
, “
Cascaded evolutionary algorithm for nonlinear system identification based on correlation functions and radial basis functions neural networks
,”
Mech. Syst. Signal Process.
68
,
378
393
(
2016
).
8.
A. R.
Tavakolpour-Saleh
,
S. A.
Nasib
,
A.
Sepasyan
, and
S. M.
Hashemi
, “
Parametric and nonparametric system identification of an experimental turbojet engine
,”
Aerosp. Sci. Technol.
43
,
21
29
(
2015
).
9.
P.
Dreesen
,
M.
Ishteva
, and
J.
Schoukens
, “
Decoupling multivariate polynomials using first-order information and tensor decompositions
,”
SIAM J. Matrix Anal. Appl.
36
,
864
879
(
2015
).
10.
S.
Greydanus
,
M.
Dzamba
, and
J.
Yosinski
, “
Hamiltonian neural networks
,”
Adv. Neural Inf. Process. Syst.
32
,
15379
15389
(
2019
).
11.
M.
Finzi
,
K. A.
Wang
, and
A. G.
Wilson
, “
Simplifying Hamiltonian and Lagrangian neural networks via explicit constraints
,”
Adv. Neural Inf. Process. Syst.
33
,
13880
13889
(
2020
), https://proceedings.neurips.cc/paper_files/paper/2020 and https://proceedings.neurips.cc/paper_files/paper/2020/hash/9f655cc8884fda7ad6d8a6fb15cc001e-Abstract.html.
12.
M.
Raissi
,
P.
Perdikaris
, and
G.
Karniadakis
, “
Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations
,”
J. Comput. Phys.
378
,
686
707
(
2019
).
13.
R.
Chen
,
Y.
Rubanova
,
J.
Bettencourt
, and
D.
Duvenaud
, “
Neural ordinary differential equations
,”
Adv. Neural Inf. Process. Syst.
31
,
6572
6583
(
2018
).
14.
J.
O’Leary
,
J.
Paulson
, and
A.
Mesbah
, “
Stochastic physics-informed neural ordinary differential equations
,”
J. Comput. Phys.
468
,
111466
(
2022
).
15.
L.
Lu
,
X.
Meng
,
Z.
Mao
, and
G.
Karniadakis
, “
Deepxde: A deep learning library for solving differential equations
,”
SIAM Rev.
63
,
208
228
(
2021
).
16.
C.
Wu
,
M.
Zhu
,
Q.
Tan
,
Y.
Kartha
, and
L.
Lu
, “
A comprehensive study of non-adaptive and residual-based adaptive sampling for physics-informed neural networks
,”
Comput. Methods Appl. Mech. Eng.
403
,
115671
(
2023
).
17.
M. A.
Nabian
,
R. J.
Gladstone
, and
H.
Meidani
, “
Efficient training of physics-informed neural networks via importance sampling
,”
Comput.-Aided Civ. Infrastruct. Eng.
36
,
962
977
(
2021
).
18.
W.
Gao
and
C.
Wang
, “
Active learning based sampling for high-dimensional nonlinear partial differential equations
,”
J. Comput. Phys.
475
,
111848
(
2023
).
19.
K.
Tang
,
X.
Wan
, and
C.
Yang
, “
Das-pinns: A deep adaptive sampling method for solving high-dimensional partial differential equations
,”
J. Comput. Phys.
476
,
111868
(
2023
).
20.
J.
Hanna
,
J.
Aguado
,
S.
Comas-Cardona
,
R.
Askri
, and
D.
Borzacchiello
, “
Residual-based adaptivity for two-phase flow simulation in porous media using physics-informed neural networks
,”
Comput. Methods Appl. Mech. Eng.
396
,
115100
(
2022
).
21.
S.
Zeng
,
Z.
Zhang
, and
Q.
Zou
, “
Adaptive deep neural networks methods for high-dimensional partial differential equations
,”
J. Comput. Phys.
463
,
111232
(
2022
).
22.
J.
Paulson
,
M.
Martin-Casas
, and
A.
Mesbah
, “
Input design for online fault diagnosis of nonlinear systems with stochastic uncertainty
,”
Ind. Eng. Chem. Res.
56
,
9593
9605
(
2017
).
23.
K.
Ponomareva
,
P.
Date
, and
Z.
Wang
, “
A new unscented Kalman filter with higher order moment-matching
,”
Proc. 19th Int. Symp. Math. Theory Netw. Syst.
5
,
1609
1613
(
2010
).
24.
D.
Ebeigbe
,
T.
Berry
,
M.
Norton
,
A.
Whalen
,
D.
Simon
,
T.
Sauer
, and
S.
Schiff
, “A generalized unscented transformation for probability distributions,” arXiv (2021).
25.
H.
Zhang
,
W.
Xu
,
Y.
Lei
, and
Y.
Qiao
, “
Noise-induced vegetation transitions in the grazing ecosystem
,”
Appl. Math. Model.
76
,
225
237
(
2019
).
26.
J.
Duan
,
An Introduction to Stochastic Dynamics
(
Cambridge University Press
,
2015
), Vol. 51.
27.
R.
Ibrahim
,
Vibro-Impact Dynamics: Modeling, Mapping and Applications
(
Springer Science & Business Media
,
2009
), Vol. 43.
28.
S.
Julier
and
J.
Uhlmann
, “New extension of the kalman filter to nonlinear systems,” in Signal Processing, Sensor Fusion, and Target Recognition VI (SPIE, 1997), Vol. 3068, pp. 182–193.
29.
P.
Han
,
L.
Wang
,
W.
Xu
,
H.
Zhang
, and
Z.
Ren
, “
The stochastic p-bifurcation analysis of the impact system via the most probable response
,”
Chaos Soliton Fract
144
,
110631
(
2021
).
30.
S.
Salahshour
,
A.
Ahmadian
,
B.
Pansera
, and
M.
Ferrara
, “
Uncertain inverse problem for fractional dynamical systems using perturbed collage theorem
,”
Commun. Nonlinear Sci. Numer. Simul.
94
,
105553
(
2021
).
31.
J.-H.
He
, “
Homotopy perturbation method: A new nonlinear analytical technique
,”
Appl. Math. Comput.
135
,
73
79
(
2003
).
32.
J.
Beck
and
L.
Katafygiotis
, “
Updating models and their uncertainties. I: Bayesian statistical framework
,”
J. Eng. Mech.
124
,
455
461
(
1998
).
33.
L.
Katafygiotis
and
J.
Beck
, “
Updating models and their uncertainties. II: Model identifiability
,”
J. Eng. Mech.
124
,
463
467
(
1998
).
34.
D.
Floryan
and
M. D.
Graham
, “
Data-driven discovery of intrinsic dynamics
,”
Nat. Mach. Intell.
4
,
1113
1120
(
2022
).
35.
M.
Meilă
and
H.
Zhang
, “
Manifold learning: What, how, and why
,”
Annu. Rev. Stat. Appl.
11
,
393
417
(
2023
).
36.
A. J.
Linot
and
M. D.
Graham
, “
Deep learning to discover and predict dynamics on an inertial manifold
,”
Phys. Rev. E
101
,
062209
(
2020
).
You do not currently have access to this content.