This paper investigates the dynamics of a tritrophic food chain model incorporating an Allee effect, sexually reproductive generalist top predators, and Holling type IV and Beddington–DeAngelis functional responses for interactions across different trophic levels. Analytically, we explore the feasible equilibria, their local stability, and various bifurcations, including Hopf, saddle-node, transcritical, and Bogdanov–Takens bifurcations. Numerical findings suggest that higher Allee intensity in prey growth leads to the inability of species coexistence, resulting in a decline in species density. Likewise, a lower reproduction rate and a higher strength of intraspecific competition among top predators also prevent the coexistence of species. Conversely, a rapid increase in the reproduction rate and a decrease in the strength of intraspecific competition among top predators enhance the densities of prey and top predators while decreasing intermediate predator density. We also reveal the presence of bistability and tristability phenomena within the system. Furthermore, we extend our autonomous model to its nonautonomous counterpart by introducing seasonally perturbed parameters. Numerical analysis of the nonautonomous model reveals that higher seasonal strength in the reproduction rate and intraspecific competition of top predators induce chaotic behavior, which is also confirmed by the maximum Lyapunov exponent. Additionally, we observe that seasonality may lead to the extinction of species from the ecosystem. Factors such as the Allee effect and growth rate of prey can cause periodicity in population densities. Understanding these trends is critical for controlling changes in population density within the ecosystem. Ecologists, environmentalists, and policymakers stand to benefit significantly from the invaluable insights garnered from this study. Specifically, our findings offer pivotal guidance for shaping future strategies aimed at safeguarding biodiversity and maintaining ecological stability amidst changing environmental conditions. By contributing to the existing body of knowledge, our study advances the field of ecological science, enhancing the comprehension of predator–prey dynamics across diverse ecological conditions.

1.
A. J.
Lotka
,
Elements of Physical Biology
(
Williams & Wilkins
,
1925
).
2.
A. A.
Berryman
, “
The origins and evolution of predator–prey theory
,”
Ecology
73
(
5
),
1530
1535
(
1992
).
3.
C. S.
Holling
, “
The components of predation as revealed by a study of small-mammal predation of the European Pine Sawfly1
,”
Can. Entomol.
91
(
5
),
293
320
(
1959
).
4.
C. S.
Holling
, “
Some characteristics of simple types of predation and parasitism1
,”
Can. Entomol.
91
(
7
),
385
398
(
1959
).
5.
J. H.
Vandermeer
and
D. E.
Goldberg
,
Population Ecology: First Principles
(
Princeton University Press
,
2013
).
6.
O.
Anderson
, “
Optimal foraging by largemouth bass in structured environments
,”
Ecology
65
(
3
),
851
861
(
1984
).
7.
T. W.
Anderson
, “
Predator responses, prey refuges, and density–dependent mortality of a marine fish
,”
Ecology
82
(
1
),
245
257
(
2001
).
8.
D. W.
Johnson
, “
Predation, habitat complexity, and variation in density–dependent mortality of temperate reef fishes
,”
Ecology
87
(
5
),
1179
1188
(
2006
).
9.
C.
Cosner
,
D. L.
DeAngelis
,
J. S.
Ault
, and
D. B.
Olson
, “
Effects of spatial grouping on the functional response of predators
,”
Theor. Popul. Biol.
56
(
1
),
65
75
(
1999
).
10.
J. R.
Beddington
, “
Mutual interference between parasites or predators and its effect on searching efficiency
,”
J. Anim. Ecol.
44
(1),
331
340
(
1975
).
11.
D. L.
DeAngelis
,
R. A.
Goldstein
, and
R. V.
O’Neill
, “
A model for tropic interaction
,”
Ecology
56
(
4
),
881
892
(
1975
).
12.
W. C.
Allee
,
Animal Aggregations: A Study in General Sociology
(
University of Chicago Press
,
1931
).
13.
F.
Courchamp
,
L.
Berec
, and
J.
Gascoigne
,
Allee Effects in Ecology and Conservation
(
Oxford University Press
,
Oxford
,
2008
).
14.
M. J.
Groom
, “
Allee effects limit population viability of an annual plant
,”
Am. Nat.
151
(
6
),
487
496
(
1998
).
15.
C. M.
Taylor
and
A.
Hastings
, “
Allee effects in biological invasions
,”
Ecol. Lett.
8
,
895
908
(
2005
).
16.
F.
Courchamp
,
T.
Clutton-Brock
, and
B.
Grenfell
, “
Inverse density dependence and the Allee effect
,”
Trends Ecol. Evol.
14
,
405
410
(
1999
).
17.
M.
Banerjee
and
Y.
Takeuchi
, “
Maturation delay for the predators can enhance stable coexistence for a class of prey-predator models
,”
J. Theor. Biol.
412
,
154
171
(
2017
).
18.
N.
Min
and
M.
Wang
, “
Hopf bifurcation and steady-state bifurcation for a Leslie-Gower prey-predator model with strong Allee effect in prey
,”
Discrete Contin. Dyn. Syst. A
39
(
2
),
1071
1099
(
2019
).
19.
H.
Lu
and
W.
Wang
, “
Dynamics of a delayed discrete semi-ratio-dependent predator-prey system with Holling type IV functional response
,”
Adv. Differ. Equ.
2011
(7),
1
19
(
2011
).
20.
C.
Lu
and
L.
Zhang
, “
Permanence and global attractivity of a discrete semi-ratio dependent predator-prey system with Holling II type functional response
,”
J. Appl. Math. Comput.
33
(
1-2
),
125
135
(
2010
).
21.
D.
Jana
, “
Stabilizing effect of prey refuge and predator’s interference on the dynamics of prey with delayed growth and generalist predator with delayed gestation
,”
Int. J. Ecol.
2014
,
429086
(
2014
).
22.
A.
Friedman
,
Mathematical Biology
(
American Mathematical Society
,
2018
), Vol. 127.
23.
W.
Yang
, “
Global asymptotical stability and persistent property for a diffusive predator–prey system with modified Leslie–Gower functional response
,”
Nonlinear Anal.: Real World Appl.
14
(
3
),
1323
1330
(
2013
).
24.
A.
Priyadarshi
and
S.
Gakkhar
, “
Dynamics of Leslie–Gower type generalist predator in a tri-trophic food web system
,”
Commun. Nonlinear Sci. Numer. Simul.
18
(
11
),
3202
3218
(
2013
).
25.
B. M.
Fischer
,
E.
Meyer
, and
M.
Maraun
, “
Positive correlation of trophic level and proportion of sexual taxa of oribatid mites (Acari: Oribatida) in alpine soil systems
,”
Exp. Appl. Acarol.
63
,
465
479
(
2014
).
26.
R. D.
Parshad
,
A.
Basheer
,
D.
Jana
, and
J.
Tripathi
, “
Do prey handling predators really matter: Subtle effects of a Crowley–Martin functional response
,”
Chaos Soliton. Fract.
103
,
410
421
(
2017
).
27.
D.
Jana
and
J. P.
Tripathi
, “
Impact of generalist type sexually reproductive top predator interference on the dynamics of a food chain model
,”
Int. J. Dyn. Control
5
,
999
1009
(
2017
).
28.
D.
Jana
,
R.
Gopal
, and
M.
Lakshmanan
, “
Complex dynamics generated by negative and positive feedback delays of a prey-predator system with prey refuge: Hopf-bifurcation to chaos
,”
Int. J. Dyn. Control
5
(
4
),
1020
1034
(
2017
).
29.
D.
Jana
,
R.
Agrawal
, and
R. K.
Upadhyay
, “
Top-predator interference and gestation delay as determinants of the dynamics of a realistic model food chain
,”
Chaos Soliton. Fract.
69
,
50
63
(
2014
).
30.
R. D.
Parshad
,
N.
Kumari
, and
S.
Kouachi
, “
A remark on Study of a Leslie-Gower-type tritrophic population model
,”
Chaos Soliton. Fract.
71
,
22
28
(
2015
).
31.
R. K.
Upadhyay
,
R. K.
Naji
,
S. N.
Raw
, and
B.
Dubey
, “
The role of top predator interference on the dynamics of a food chain model
,”
Commun. Nonlinear Sci. Numer. Simul.
18
(
3
),
757
768
(
2013
).
32.
R.
Agrawal
,
D.
Jana
,
R. K.
Upadhyay
, and
V. S.
Rao
, “
Complex dynamics of sexually reproductive generalist predator and gestation delay in a food chain model: Double Hopf-bifurcation to chaos
,”
J. Appl. Math. Comput.
55
,
513
547
(
2017
).
33.
D.
Jana
,
R. K.
Upadhyay
,
R.
Agrawal
,
R. D.
Parshad
, and
A.
Basheer
, “
Explosive tritrophic food chain models with interference: A comparative study
,”
J. Franklin Inst.
357
(
1
),
385
413
(
2020
).
34.
M. A.
Lewis
and
P.
Kareiva
, “
Allee dynamics and the spread of invading organisms
,”
Theor. Popul. Biol.
43
,
141
158
(
1993
).
35.
G.
Birkhoff
and
G. C.
Rota
,
Ordinary Differential Equations
, 4th ed. (
John Wiley & Sons
,
1989
).
36.
L.
Perko
,
Differential Equations and Dynamical Systems
(
Springer Science and Business Media
,
2013
), Vol. 7.
37.
Y. A.
Kuznetsov
,
Elements of Applied Bifurcation Theory
, 2nd ed. (
Springer
,
New York
,
1998
), Vol. 112.
38.
D.
Bortz
and
P.
Nelson
, “
Sensitivity analysis of a nonlinear lumped parameter model of HIV infection dynamics
,”
Bull. Math. Biol.
66
,
1009
1026
(
2004
).
39.
R. E.
Gaines
and
J. L.
Mawhin
,
Coincidence Degree and Nonlinear Differential Equations
(
Springer-Verlag
,
Berlin
,
1977
).
40.
S.
Debnath
,
U.
Ghosh
, and
S.
Sarkar
, “
Global dynamics of a tritrophic food chain model subject to the Allee effects in the prey population with sexually reproductive generalized–type top predator
,”
Comput. Math. Methods
2
(
2
),
1079
(
2020
).
41.
C.
Manchein
,
B.
Fusinato
,
H. S.
Chagas
, and
H. A.
Albuquerque
, “
Quint points lattice and multistability in a damped-driven curved carbonnanotube oscillator model
,”
Chaos
33
(
6
),
063147
(
2023
).
42.
M.
Hossain
,
S.
Garai
,
S.
Jafari
, and
N.
Pal
, “
Bifurcation, chaos, multistability, and organized structures in a predator-prey model with vigilance
,”
Chaos
32
(
6
),
063139
(
2022
).
43.
M.
Zhao
and
S.
Lv
, “
Chaos in a three-species food chain model with a Beddington DeAngelis functional response
,”
Chaos Soliton. Fract.
40
,
2305
2316
(
2009
).
44.
S.
Lv
and
Z.
Fang
, “
The dynamic complexity of a host–parasitoid model with a Beddington–DeAngelis functional response
,”
Chaos Soliton. Fract.
41
,
2617
2623
(
2009
).
You do not currently have access to this content.