In the phenomenon of mixed-mode oscillations, transitions between large-amplitude and small-amplitude oscillations may lead to anomalous jitter in the probe of a tapping mode atomic force microscope (TM-AFM) during the scanning process, thereby affecting the accuracy and clarity of the topographical images of the tested sample’s surface. This work delves deeply into various mixed-mode oscillations and the corresponding formation mechanisms in TM-AFM under low-frequency resonant excitation. Through a detailed analysis of bifurcation sets of the fast subsystem, we found that the system’s mixed-mode oscillations encompass the typical two coexisting branches and the novel three coexisting branches of equilibrium point attractors. In the stable case, a certain transition pattern in phase trajectory can be observed involving two jumps and four jumps, switching between quiescent and spiking states. In the bi-stable case, the trajectory undergoes distinct transitions decided by whether to pass through or crossover the middle branch of attractors when bifurcation occurs. By applying basin of attraction and fast–slow analysis methods, we unfold the dynamic mechanism of mixed-mode oscillations with distinct switching patterns. Our research contributes to a better understanding of complex oscillations of TM-AFM and provides valuable insights for improving image quality and measurement precision while mitigating detrimental oscillations.

1.
A.
Farajpour
,
M. H.
Ghayesh
, and
H.
Farokhi
, “
A review on the mechanics of nanostructures
,”
Int. J. Eng. Sci.
133
,
231
263
(
2018
).
2.
Z.
Chen
,
F.
Chen
,
D.
Wang
, and
L.
Zhou
, “
Tapping modes in the atomic force microscope model with Lennard-Jones force and slow-fast base motion
,”
Chaos Soliton. Fract.
144
,
110696
(
2021
).
3.
M. R.
Bahrami
, “
Dynamic analysis of atomic force microscope in tapping mode
,”
Vib. Proc.
32
,
13
19
(
2020
).
4.
A.
Dzedzickis
,
V.
Bučinskas
,
T.
Lenkutis
,
I.
Morkvėnaitė-Vilkončienė
, and
V.
Kovalevskyi
, in Automation 2019, edited by R. Szewczyk, C. Zieliński, and M. Kaliczyńska (Springer International Publishing, Cham, 2020), pp. 599–607.
5.
C.
Li
,
M.
Ostadhassan
,
S.
Guo
,
T.
Gentzis
, and
L.
Kong
, “
Application of PeakForce tapping mode of atomic force microscope to characterize nanomechanical properties of organic matter of the Bakken Shale
,”
Fuel
233
,
894
910
(
2018
).
6.
A.
Smirnov
,
V. M.
Yasinskii
,
D. S.
Filimonenko
,
E.
Rostova
,
G.
Dietler
, and
S. K.
Sekatskii
, “
True tapping mode scanning near-field optical microscopy with bent glass fiber probes
,”
Scanning
2018
,
1
9
(
2018
).
7.
Z.
Wang
,
J.
Qian
,
Y.
Li
,
Y.
Zhang
,
Z.
Song
,
Z.
Dou
, and
R.
Lin
, “
Wavelet analysis of higher harmonics in tapping mode atomic force microscopy
,”
Micron
118
,
58
64
(
2019
).
8.
A. H. G.
Pasha
and
A.
Sadeghi
, “
Experimental and theoretical investigations about the nonlinear vibrations of rectangular atomic force microscope cantilevers immersed in different liquids
,”
Arch. Appl. Mech.
90
(
9
),
1893
1917
(
2020
).
9.
Y.
Naitoh
,
Y. J.
Li
, and
Y.
Sugawara
, in Comprehensive Nanoscience and Nanotechnology (Elsevier, 2019), pp. 33–52.
10.
K. D. S.
Rodrigues
,
J. M.
Balthazar
,
A. M.
Tusset
,
B. R.
De Pontes
, and
Á. M.
Bueno
, “
Preventing chaotic motion in tapping-mode atomic force microscope
,”
J. Control Autom. Electr. Syst.
25
(
6
),
732
740
(
2014
).
11.
C.-T.
Hsieh
,
H.-T.
Yau
,
C.-C.
Wang
, and
Y.-S.
Hsieh
, “
Nonlinear behavior analysis and control of the atomic force microscope and circuit implementation
,”
J. Low Freq. Noise Vib. Act. Control
38
(
3–4
),
1576
1593
(
2019
).
12.
J. M.
Balthazar
,
A. M.
Tusset
,
S. L. T.
De Souza
, and
A. M.
Bueno
, “
Microcantilever chaotic motion suppression in tapping mode atomic force microscope
,”
Proc. Inst. Mech. Eng., Part C
227
(
8
),
1730
1741
(
2013
).
13.
M. A.
Ribeiro
,
J. M.
Balthazar
,
W. B.
Lenz
,
R. T.
Rocha
, and
A. M.
Tusset
, “
Numerical exploratory analysis of dynamics and control of an atomic force microscopy in tapping mode with fractional order
,”
Shock Vib.
2020
,
1
18
(
2020
).
14.
R.
García
and
A.
San Paulo
, “
Attractive and repulsive tip-sample interaction regimes in tapping-mode atomic force microscopy
,”
Phys. Rev. B
60
(
7
),
4961
4967
(
1999
).
15.
R.
García
and
A.
San Paulo
, “
Dynamics of a vibrating tip near or in intermittent contact with a surface
,”
Phys. Rev. B
61
(
20
),
R13381
R13384
(
2000
).
16.
M.
Ashhab
,
M. V.
Salapaka
,
M.
Dahleh
, and
I.
Mezić
, “
Melnikov-based dynamical analysis of microcantilevers in scanning probe microscopy
,”
Nonlinear Dyn.
20
(
3
),
197
220
(
1999
).
17.
M.
Ashhab
,
M. V.
Salapaka
,
M.
Dahleh
, and
I.
Mezić
, “
Dynamical analysis and control of microcantilevers
,”
Automatica
35
(
10
),
1663
1670
(
1999
).
18.
S. I.
Lee
,
S. W.
Howell
,
A.
Raman
, and
R.
Reifenberger
, “
Nonlinear dynamics of microcantilevers in tapping mode atomic force microscopy: A comparison between theory and experiment
,”
Phys. Rev. B
66
(
11
),
115409
(
2002
).
19.
A.
Raman
,
J.
Melcher
, and
R.
Tung
, “
Cantilever dynamics in atomic force microscopy
,”
Nano Today
3
(
1–2
),
20
27
(
2008
).
20.
A.
Raman
,
R.
Reifenberger
,
J.
Melcher
, and
R.
Tung
, “Cantilever dynamics and nonlinear effects in atomic force microscopy,” in Noncontact Atomic Force Microscopy, edited by S. Morita, F.J. Giessibl, and R. Wiesendanger (Springer Berlin Heidelberg, Berlin, Heidelberg, 2009), pp. 361–395.
21.
A.
Chandrashekar
,
P.
Belardinelli
,
S.
Lenci
,
U.
Staufer
, and
F.
Alijani
, “
Mode coupling in dynamic atomic force microscopy
,”
Phys. Rev. Appl.
15
(
2
),
024013
(
2021
).
22.
P.
Belardinelli
,
A.
Chandrashekar
,
F.
Alijani
, and
S.
Lenci
, “
Non-smooth dynamics of tapping mode atomic force microscopy
,”
J. Comput. Nonlinear Dyn.
18
(
8
),
081004
(
2023
).
23.
M. R.
Bahrami
and
A. W. B.
Abeygunawardana
, in Advances in Mechanical Engineering, edited by A.N. Evgrafov (Springer International Publishing, Cham, 2018), pp. 9–15.
24.
M.
Desroches
,
J.
Guckenheimer
,
B.
Krauskopf
,
C.
Kuehn
,
H. M.
Osinga
, and
M.
Wechselberger
, “
Mixed-mode oscillations with multiple time scales
,”
SIAM Rev.
54
(
2
),
211
288
(
2012
).
25.
V.
Petrov
,
S. K.
Scott
, and
K.
Showalter
, “
Mixed-mode oscillations in chemical systems
,”
J. Chem. Phys.
97
(
9
),
6191
6198
(
1992
).
26.
S.
Ai
and
S.
Sadhu
, “
The entry-exit theorem and relaxation oscillations in slow-fast planar systems
,”
J. Differ. Equations
268
(
11
),
7220
7249
(
2020
).
27.
S. K.
Sharma
,
A.
Mondal
,
A.
Mondal
,
M. A.
Aziz-Alaoui
,
R. K.
Upadhyay
, and
J.
Ma
, “
Emergence of Canard induced mixed mode oscillations in a slow–fast dynamics of a biophysical excitable model
,”
Chaos Soliton. Fract.
164
,
112669
(
2022
).
28.
M.
Desroches
,
T. J.
Kaper
, and
M.
Krupa
, “
Mixed-mode bursting oscillations: Dynamics created by a slow passage through spike-adding Canard explosion in a square-wave burster
,”
Chaos
23
(
4
),
046106
(
2013
).
29.
G.
Palasantzas
,
P. J.
Van Zwol
, and
J. T. M.
De Hosson
, “
Transition from Casimir to van der Waals force between macroscopic bodies
,”
Appl. Phys. Lett.
93
(
12
),
121912
(
2008
).
30.
X.
Han
and
Q.
Bi
, “
Generation of hysteresis cycles with two and four jumps in a shape memory oscillator
,”
Nonlinear Dyn.
72
(
1–2
),
407
415
(
2013
).
31.
M.
Ding
,
X.
Han
, and
Q.
Bi
, “
Numerical investigation of the origin of compound relaxation oscillations in a nonlinear oscillator
,”
Nonlinear Dyn.
111
(
15
),
13853
13864
(
2023
).
You do not currently have access to this content.