The equatorial region of the Earth’s atmosphere serves as both a significant locus for phenomena, including the Madden–Julian Oscillation (MJO), and a source of formidable complexity. This complexity arises from the intricate interplay between nonlinearity and thermodynamic processes, particularly those involving moisture. In this study, we employ a normal mode decomposition of atmospheric reanalysis ERA-5 datasets to investigate the influence of nonlinearity and moisture on amplitude growth, propagation speed, and mode coupling associated with equatorially trapped waves. We focus our analysis on global-scale baroclinic Kelvin and Rossby waves, recognized as crucial components contributing to the variability of the MJO. We examine the dependence of wave amplitudes on the background moisture field in the equatorial region, as measured by total column water vapor. Our analysis demonstrates the crucial role of moisture in exciting these waves. We further investigate the dependence of the propagation speed of the waves on their amplitudes and the background moisture field. Our analysis reveals a robust correlation between the phase speed of the normal modes and their corresponding amplitude, whereas a weaker correlation is found between the eigenmodes’ phase speed and the moisture field. Hence, our findings suggest that moisture plays a role in exciting the global-scale Rossby–Kelvin structure of the MJO. In this context, the propagation speed of the eigenmodes is mainly influenced by their amplitudes, underscoring the significant role of nonlinearity in wave propagation.

1.
A.
Timmermann
,
S.-I.
An
,
J.-S.
Kug
,
F.-F.
Jin
,
W.
Cai
,
A.
Capotondi
,
K. M.
Cobb
,
M.
Lengaigne
,
M. J.
McPhaden
,
M. F.
Stuecker
et al., “
El niño–southern oscillation complexity
,”
Nature
559
,
535
545
(
2018
).
2.
C.
Zhang
, “
Madden-Julian oscillation
,”
Rev. Geophys.
43
,
1–36
, https://doi.org/10.1029/2004RG000158 (
2005
).
3.
M.
Baldwin
,
L.
Gray
,
T.
Dunkerton
,
K.
Hamilton
,
P.
Haynes
,
W.
Randel
,
J.
Holton
,
M.
Alexander
,
I.
Hirota
,
T.
Horinouchi
et al., “
The quasi-biennial oscillation
,”
Rev. Geophys.
39
,
179
229
, https://doi.org/10.1029/1999RG000073 (
2001
).
4.
P.
Delplace
,
J.
Marston
, and
A.
Venaille
, “
Topological origin of equatorial waves
,”
Science
358
,
1075
1077
(
2017
).
5.
K. A.
Emanuel
, “
An air-sea interaction model of intraseasonal oscillations in the tropics
,”
J. Atmos. Sci.
44
,
2324
2340
(
1987
).
6.
G. N.
Kiladis
,
M. C.
Wheeler
,
P. T.
Haertel
,
K. H.
Straub
, and
P. E.
Roundy
, “
Convectively coupled equatorial waves
,”
Rev. Geophys.
47
,
RG2003
, https://doi.org/10.1029/2008RG000266 (
2009
).
7.
R. S.
Lindzen
, “
Wave-CISK in the tropics
,”
J. Atmos. Sci.
31
,
156
179
(
1974
).
8.
E.
Ramirez
,
P. L.
da Silva Dias
, and
C. F.
Raupp
, “
Multiscale atmosphere–ocean interactions and the low-frequency variability in the equatorial region
,”
J. Atmos. Sci.
74
,
2503
2523
(
2017
).
9.
A. J.
Majda
and
J. A.
Biello
, “
The nonlinear interaction of barotropic and equatorial baroclinic Rossby waves
,”
J. Atmos. Sci.
60
,
1809
1821
(
2003
).
10.
C. F.
Raupp
,
P. L. S.
Dias
,
E. G.
Tabak
, and
P.
Milewski
, “
Resonant wave interactions in the equatorial waveguide
,”
J. Atmos. Sci.
65
,
3398
3418
(
2008
).
11.
C. F.
Raupp
and
P. L. S.
Dias
, “
Resonant wave interactions in the presence of a diurnally varying heat source
,”
J. Atmos. Sci.
66
,
3165
3183
(
2009
).
12.
B.
Khouider
,
A. J.
Majda
, and
S. N.
Stechmann
, “
Climate science in the tropics: Waves, vortices and PDEs
,”
Nonlinearity
26
,
R1
(
2012
).
13.
T.
Matsuno
, “
Quasi-geostrophic motions in the equatorial area
,”
J. Meteorol. Soc. Jpn. Ser. II
44
,
25
43
(
1966
).
14.
A. E.
Gill
, “
Some simple solutions for heat-induced tropical circulation
,”
Q. J. R. Meteorol. Soc.
106
,
447
462
(
1980
).
15.
M.
Yanai
and
T.
Maruyama
, “
Stratospheric wave disturbances propagating over the equatorial Pacific
,”
J. Meteorol. Soc. Jpn. Ser. II
44
,
291
294
(
1966
).
16.
M.
Wheeler
and
G. N.
Kiladis
, “
Convectively coupled equatorial waves: Analysis of clouds and temperature in the wavenumber–frequency domain
,”
J. Atmos. Sci.
56
,
374
399
(
1999
).
17.
T.
Tsuda
,
Y.
Murayama
,
H.
Wiryosumarto
,
S. W. B.
Harijono
, and
S.
Kato
, “
Radiosonde observations of equatorial atmosphere dynamics over Indonesia: 1. equatorial waves and diurnal tides
,”
J. Geophys. Res., Atmos.
99
,
10491
10505
(
1994
).
18.
J. W.
Bergman
and
M. L.
Salby
, “
Equatorial wave activity derived from fluctuations in observed convection
,”
J. Atmos. Sci.
51
,
3791
3806
(
1994
).
19.
A. H.
Sobel
,
J.
Nilsson
, and
L. M.
Polvani
, “
The weak temperature gradient approximation and balanced tropical moisture waves
,”
J. Atmos. Sci.
58
,
3650
3665
(
2001
).
20.
D. J.
Raymond
and
Ž.
Fuchs
, “
Moisture modes and the Madden–Julian oscillation
,”
J. Clim.
22
,
3031
3046
(
2009
).
21.
Á. F.
Adames
and
D.
Kim
, “
The MJO as a dispersive, convectively coupled moisture wave: Theory and observations
,”
J. Atmos. Sci.
73
,
913
941
(
2016
).
22.
Z.
Fuchs-Stone
,
D. J.
Raymond
, and
S.
Sentic
, “
A simple model of convectively coupled equatorial Rossby waves
,”
J. Adv. Model. Earth Syst.
11
,
173
184
(
2018
).
23.
A.
Sobel
and
E.
Maloney
, “
Moisture modes and the eastward propagation of the MJO
,”
J. Atmos. Sci.
70
,
187
192
(
2013
).
24.
A. J.
Majda
and
S. N.
Stechmann
, “
The skeleton of tropical intraseasonal oscillations
,”
Proc. Natl. Acad. Sci. U.S.A.
106
,
8417
8422
(
2009
).
25.
A. J.
Majda
and
S. N.
Stechmann
, “
Nonlinear dynamics and regional variations in the MJO skeleton
,”
J. Atmos. Sci.
68
,
3053
3071
(
2011
).
26.
Á. F.
Adames
and
D.
Kim
, “
The MJO as a dispersive, convectively coupled moisture wave: Theory and observations
,”
J. Atmos. Sci.
73
,
913
941
(
2016
).
27.
B.
Khouider
and
A. J.
Majda
, “
A simple multicloud parameterization for convectively coupled tropical waves. Part I: Linear analysis
,”
J. Atmos. Sci.
63
,
1308
1323
(
2006
).
28.
B.
Khouider
and
A. J.
Majda
, “
A simple multicloud parameterization for convectively coupled tropical waves. Part II: Nonlinear simulations
,”
J. Atmos. Sci.
64
,
381
400
(
2007
).
29.
B.
Khouider
and
A. J.
Majda
, “
Multicloud models for organized tropical convection: Enhanced congestus heating
,”
J. Atmos. Sci.
65
,
895
914
(
2008
).
30.
R. A.
Madden
and
P. R.
Julian
, “
Observations of the 40–50-day tropical oscillation—A review
,”
Mon. Weather Rev.
122
,
814
837
(
1994
).
31.
A. M.
Grimm
, “
Madden–Julian oscillation impacts on South American summer monsoon season: Precipitation anomalies, extreme events, teleconnections, and role in the MJO cycle
,”
Clim. Dyn.
53
,
907
932
(
2019
).
32.
C.
Jones
,
D. E.
Waliser
,
K.
Lau
, and
W.
Stern
, “
The Madden–Julian oscillation and its impact on Northern Hemisphere weather predictability
,”
Mon. Weather Rev.
132
,
1462
1471
(
2004
).
33.
S.
Singh
,
R.
Kripalani
, and
D.
Sikka
, “
Interannual variability of the Madden–Julian oscillations in Indian summer monsoon rainfall
,”
J. Clim.
5
,
973
978
(
1992
).
34.
A. E.
Gill
,
Atmosphere-Ocean Dynamics
(
Academic Press
,
1982
), Vol. 30.
35.
C.
Zhang
,
Á.
Adames
,
B.
Khouider
,
B.
Wang
, and
D.
Yang
, “
Four theories of the Madden-Julian oscillation
,”
Rev. Geophys.
58
,
e2019RG000685
, https://doi.org/10.1029/2019RG000685 (
2020
).
36.
J. D.
Neelin
and
J.-Y.
Yu
, “
Modes of tropical variability under convective adjustment and the Madden-Julian oscillation. Part I: Analytical results
,”
J. Atmos. Sci.
51
,
1876
1894
(
1994
).
37.
C.
Zhang
,
Á. F.
Adames
,
B.
Khouider
,
B.
Wang
, and
D.
Yang
, “
Four theories of the Madden-Julian oscillation
,”
Rev. Geophys.
58
,
e2019RG000685
, https://doi.org/10.1029/2019RG000685 (
2020
).
38.
J.-I.
Yano
and
J. J.
Tribbia
, “
Tropical atmospheric Madden–Julian oscillation: A strongly nonlinear free solitary Rossby wave?
,”
J. Atmos. Sci.
74
,
3473
3489
(
2017
).
39.
M.
Rostami
and
V.
Zeitlin
, “
Eastward-moving convection-enhanced modons in shallow water in the equatorial tangent plane
,”
Phys. Fluids
31
,
021701
(
2019
).
40.
M.
Rostami
and
V.
Zeitlin
, “
Eastward-moving equatorial modons in moist-convective shallow-water models
,”
Geophys. Astrophys. Fluid Dyn.
115
,
345
367
(
2021
).
41.
M.
Rostami
and
V.
Zeitlin
, “
Can geostrophic adjustment of baroclinic disturbances in the tropical atmosphere explain MJO events?
,”
Q. J. R. Meteorol. Soc.
146
,
3998
4013
(
2020
).
42.
M.
Rostami
and
V.
Zeitlin
, “
On the genesis and dynamics of Madden–Julian oscillation-like structure formed by equatorial adjustment of localized heating
,”
Q. J. R. Meteorol. Soc.
148
,
3788
3813
(
2022
).
43.
V. C.
Mayta
and
Á. F.
Adames-Corraliza
, “
Is the Madden-Julian oscillation a moisture mode?
,”
Geophys. Res. Lett.
50
,
e2023GL103002
, https://doi.org/10.1029/2023GL103002 (
2023
).
44.
M. C.
Wheeler
and
H. H.
Hendon
, “
An all-season real-time multivariate MJO index: Development of an index for monitoring and prediction
,”
Mon. Weather Rev.
132
,
1917
1932
(
2004
).
45.
G. N.
Kiladis
,
J.
Dias
,
K. H.
Straub
,
M. C.
Wheeler
,
S. N.
Tulich
,
K.
Kikuchi
,
K. M.
Weickmann
, and
M. J.
Ventrice
, “
A comparison of OLR and circulation-based indices for tracking the MJO
,”
Mon. Weather Rev.
142
,
1697
1715
(
2014
).
46.
N.
Diaz
,
M.
Barreiro
, and
N.
Rubido
, “
Data driven models of the Madden-Julian oscillation: Understanding its evolution and ENSO modulation
,”
Clim. Atmos. Sci.
6
,
203
(
2023
).
47.
N.
Žagar
and
C. L.
Franzke
, “
Systematic decomposition of the Madden-Julian oscillation into balanced and inertio-gravity components
,”
Geophys. Res. Lett.
42
,
6829
6835
(
2015
).
48.
A.
Majda
,
Introduction to PDEs and Waves for the Atmosphere and Ocean
(
American Mathematical Society
,
2003
), Vol. 9.
49.
B.
Raphaldini
,
P. D. S.
Peixoto
,
A. S. W.
Teruya
,
C. F. M.
Raupp
, and
M. D.
Bustamante
, “
Precession resonance of Rossby wave triads and the generation of low-frequency atmospheric oscillations
,”
Phys. Fluids
34
,
076604
(
2022
).
50.
J. P.
Boyd
, “
Equatorial solitary waves. Part I: Rossby solitons
,”
J. Phys. Oceanogr.
10
,
1699
1717
(
1980
).
51.
J. P.
Boyd
, “
Equatorial solitary waves. Part II: Envelope solitons
,”
J. Phys. Oceanogr.
13
,
428
449
(
1983
).
52.
J. J.
Tribbia
, “
Modons in spherical geometry
,”
Geophys. Astrophys. Fluid Dyn.
30
,
131
168
(
1984
).
53.
A. D.
Craik
,
Wave Interactions and Fluid Flows
(
Cambridge University Press
,
1988
).
54.
A. S.
Teruya
,
B.
Raphaldini
,
V. C.
Mayta
,
C. F.
Raupp
, and
P. L.
da Silva Dias
, “
Wavenumber-frequency spectra of normal mode function decomposed atmospheric data: Departures from the dry linear theory
,”
Atmosphere
14
,
622
(
2023
).
55.
A.
Kasahara
and
K.
Puri
, “
Spectral representation of three-dimensional global data by expansion in normal mode functions
,”
Mon. Weather Rev.
109
,
37
51
(
1981
).
56.
G. I.
Taylor
, “
The oscillations of the atmosphere
,” Proc. R. Soc. London
156
,
318
326
(
1936
).
57.
M. S.
Longuet-Higgins
, “
The eigenfunctions of Laplace’s tidal equation over a sphere
,”
Philos. Trans. R. Soc. A
262
,
511
607
(
1968
).
58.
A.
Kasahara
, “
Normal modes of ultralong waves in the atmosphere
,”
Mon. Weather Rev.
104
,
669
690
(
1976
).
59.
A.
Kasahara
, “
Numerical integration of the global barotropic primitive equations with Hough harmonic expansions
,”
J. Atmos. Sci.
34
,
687
701
(
1977
).
60.
N.
Žagar
,
A.
Kasahara
,
K.
Terasaki
,
J.
Tribbia
, and
H.
Tanaka
, “
Normal-mode function representation of global 3D data sets: Open-access software for the atmospheric research community
,”
Geosci. Model Dev.
8
,
1169
1195
(
2015
).
61.
B.
Raphaldini
,
A. S.
Wakate Teruya
,
P. L.
Silva Dias
,
V. R.
Chavez Mayta
, and
V. J.
Takara
, “
Normal mode perspective on the 2016 QBO disruption: Evidence for a basic state regime transition
,”
Geophys. Res. Lett.
47
,
e2020GL087274
, https://doi.org/10.1029/2020GL087274 (
2020
).
62.
B.
Raphaldini
,
A. S.
Teruya
,
P.
Leite da Silva Dias
,
L.
Massaroppe
, and
D. Y.
Takahashi
, “
Stratospheric ozone and quasi-biennial oscillation (QBO) interaction with the tropical troposphere on intraseasonal and interannual timescales: A normal-mode perspective
,”
Earth Syst. Dyn.
12
,
83
101
(
2021
).
63.
M. J.
Ventrice
,
M. C.
Wheeler
,
H. H.
Hendon
,
C. J.
Schreck III
,
C. D.
Thorncroft
, and
G. N.
Kiladis
, “
A modified multivariate Madden–Julian oscillation index using velocity potential
,”
Mon. Weather Rev.
141
,
4197
4210
(
2013
).
64.
B. J.
Hoskins
and
D. J.
Karoly
, “
The steady linear response of a spherical atmosphere to thermal and orographic forcing
,”
J. Atmos. Sci.
38
,
1179
1196
(
1981
).
65.
D. J.
Karoly
, “
Southern Hemisphere circulation features associated with El Niño-southern oscillation
,”
J. Clim.
2
,
1239
1252
(
1989
).
66.
K. C.
Mo
and
R. W.
Higgins
, “
The Pacific-South American modes and tropical convection during the southern hemisphere winter
,”
Mon. Weather Rev.
126
,
1581
1596
(
1998
).
67.
H.
Lim
and
C.-P.
Chang
, “
Generation of internal-and external-mode motions from internal heating: Effects of vertical shear and damping
,”
J. Atmos. Sci.
43
,
948
960
(
1986
).
68.
A.
Kasahara
and
P. L.
Silva Dias
, “
Response of planetary waves to stationary tropical heating in a global atmosphere with meridional and vertical shear
,”
J. Atmos. Sci.
43
,
1893
1911
(
1986
).
69.
B.
Wang
and
X.
Xie
, “
Low-frequency equatorial waves in vertically sheared zonal flow. Part I: Stable waves
,”
J. Atmos. Sci.
53
,
449
467
(
1996
).
70.
J.
Ferguson
,
B.
Khouider
, and
M.
Namazi
, “
Two-way interactions between equatorially-trapped waves and the barotropic flow
,”
Chin. Ann. Math.
30B
,
539
568
(
2009
).
71.
D.
Wang
,
J.
Yano
, and
Y.
Lin
, “
Madden–julian oscillations seen in the upper-troposphere vorticity field: Interactions with Rossby wave trains
,”
J. Atmos. Sci.
76
,
1785
1807
(
2019
).
72.
S. L.
Brunton
,
J. L.
Proctor
, and
J. N.
Kutz
, “
Discovering governing equations from data by sparse identification of nonlinear dynamical systems
,”
Proc. Natl. Acad. Sci. U.S.A.
113
,
3932
3937
(
2016
).
73.
V.
Mayta
and
A. F.
Adames Corraliza
, “
The stirring tropics: The ubiquity of moisture modes and moisture-vortex instability
,”
J. Clim.
37
,
1981
1997
(
2024
).
74.
J. A.
Biello
and
A. J.
Majda
, “
A new multiscale model for the Madden–Julian oscillation
,”
J. Atmos. Sci.
62
,
1694
1721
(
2005
).
75.
M.
Roxy
,
P.
Dasgupta
,
M. J.
McPhaden
,
T.
Suematsu
,
C.
Zhang
, and
D.
Kim
, “
Twofold expansion of the Indo-Pacific warm pool warps the MJO life cycle
,”
Nature
575
,
647
651
(
2019
).
76.
D. J.
Raymond
and
Ž.
Fuchs
, “
The Madden-Julian oscillation and the Indo-Pacific warm pool
,”
J. Adv. Model. Earth Syst.
10
,
951
960
(
2018
).
77.
P. E.
Roundy
, “
Analysis of convectively coupled kelvin waves in the Indian Ocean MJO
,”
J. Atmos. Sci.
66
,
3165
3183
(
2008
).
78.
B.
Raphaldini
,
A.
Teruya
,
C.
Raupp
,
P.
Silva-Dias
, and
D.
Takahashi
, “
Information flow between MJO-related waves: A network approach on the wave space
,”
Eur. Phys. J. Spec. Top.
230
,
3009
3017
(
2021
).
79.
B. M.
de Silva
,
K.
Champion
,
M.
Quade
,
J.-C.
Loiseau
,
J. N.
Kutz
, and
S. L.
Brunton
, “Pysindy: A python package for the sparse identification of nonlinear dynamics from data,” arXiv:2004.08424 (2020).
80.
C. F. M.
Raupp
and
P. L.
Silva Dias
, “
Interaction of equatorial waves through resonance with the diurnal cycle of tropical heating
,”
Tellus A
62
,
706
718
(
2022
).
81.
Y.
Hayashi
, “
A theory of large-scale equatorial waves generated by condensational heat and accelerating the zonal wind
,”
J. Meteorol. Soc. Jpn.
48
,
140
160
(
1970
).
82.
D. E.
Stevens
and
R. S.
Lindzen
, “
Tropical wave-cisk with a moisture budget and cumulus friction
,”
J. Atmos. Sci.
35
,
940
961
(
1978
).
83.
D.
Ciro
,
B.
Raphaldini
, and
C. F. M.
Raupp
, “
Topography-induced locking of drifting Rossby–Haurwitz waves
,”
Phys. Fluids
32
,
0000
(
2020
).
84.
A. J.
Majda
,
R.
Rosales
,
E. G.
Tabak
, and
C.
Turner
, “
Interaction of large-scale equatorial waves and dispersion of kelvin waves through topographic resonances
,”
J. Atmos. Sci.
56
,
4118
4133
(
1999
).
85.
C.
Zhang
and
M.
Dong
, “
Seasonality in the Madden–Julian oscillation
,”
J. Clim.
17
,
3169
3180
(
2004
).
86.
C.-P.
Chang
and
H.
Lim
, “
Kelvin wave-CISK: A possible mechanism for the 30–50 day oscillations
,”
J. Atmos. Sci.
45
,
1709
1720
(
1988
).
87.
K.-M.
Lau
and
L.
Peng
, “
Origin of low-frequency (intraseasonal) oscillations in the tropical atmosphere. Part I: Basic theory
,”
J. Atmos. Sci.
44
,
950
972
(
1987
).
88.
B.
Wang
and
H.
Rui
, “
Dynamics of the coupled moist Kelvin-Rossby wave on an equatorial beta-plane
,”
J. Atmos. Sci.
47
,
397
413
(
1990
).
89.
Z.
Fuchs
and
D. J.
Raymond
, “
A simple model of intraseasonal oscillations
,”
J. Adv. Model. Earth Syst.
9
,
1195
1211
(
2017
).
90.
P. L.
Silva Dias
,
W. H.
Schubert
, and
M.
DeMaria
, “
Large-scale response of the tropical atmosphere to transient convection
,”
J. Atmos. Sci.
40
,
2689
2707
(
1983
).
91.
M.
Rostami
and
V.
Zeitlin
, “
Geostrophic adjustment on the equatorial Beta-plane revisited
,”
Phys. Fluids
31
,
081702
(
2019
).
92.
W.
Lu
and
P.-C.
Hsu
, “
Factors controlling the seasonality of the Madden-Julian oscillation
,”
Dyn. Atmos. Oceans
78
,
106
120
(
2017
).
93.
F.
Ahmed
, “
The MJO on the equatorial beta plane: An eastward-propagating Rossby wave induced by meridional moisture advection
,”
J. Atmos. Sci.
78
,
3115
3135
(
2021
).
94.
D.
Kim
,
J.-S.
Kug
, and
A. H.
Sobel
, “
Propagating versus nonpropagating Madden–Julian oscillation events
,”
J. Clim.
27
,
111
125
(
2014
).
95.
D.
Kim
,
H.
Kim
, and
M.-I.
Lee
, “
Why does the MJO detour the maritime continent during austral summer?
,”
Geophys. Res. Lett.
44
,
2579
2587
, https://doi.org/10.1002/2017GL072643 (
2017
).
96.
H.
Hersbach
,
B.
Bell
,
P.
Berrisford
, and
S.
Hirahara
, et al., “
The ERA5 global reanalysis
,”
Q. J. R. Meteorol. Soc.
146
,
1999–2049
(
2020
).

Supplementary Material

You do not currently have access to this content.