In this paper, a new stochastic epidemic model is established and the dynamical behavior of its solutions is studied for this model. A deterministic epidemic model (ordinary differential equation) is first proposed by considering the isolation mechanism, and the transmission probability function is determined by a Wells–Riley model method to analyze the transmission in the quarantine. For this deterministic model, the basic reproduction number R 0 is computed and it is used to determine the existence of disease-free and positive equilibria. The linearized stability of the equilibria is also discussed by analyzing the distribution of eigenvalues of the linear system. Following that, a corresponding stochastic epidemic model is further established by introducing stochastic disturbance. Then, the extinction result of the model is derived also with the help of the basic reproduction number R 0 s. Furthermore, by applying the theory of Markov semigroups, it is proved that the densities of the distributions of the solutions can converge to an invariant density or sweeping under certain conditions. At last, some numerical simulations are provided and discussed to illustrate the practicability of the model and the obtained theoretical results.

1.
D.
Bertacchi
,
F.
Zucca
,
S.
Foresti
,
D.
Mangioni
, and
A.
Gori
, “
Combination versus sequential monotherapy in chronic HBV infection: A mathematical approach
,”
Math. Med. Biol.
32
,
383
403
(
2015
).
2.
R. V.
Culshaw
,
S.
Ruan
, and
R. J.
Spiteri
, “
Optimal HIV treatment by maximising immune response
,”
J. Math. Biol.
48
,
545
562
(
2004
).
3.
A. B.
Gumel
,
C. C.
McCluskey
, and
P.
Driessche
, “
Mathematical study of a staged-progression HIV model with imperfect vaccine
,”
Bull. Math. Biol.
68
,
2105
2128
(
2006
).
4.
H. W.
Hethcote
, “
The mathematics of infectious diseases
,”
SIAM Rev.
42
,
599
653
(
2000
).
5.
J. M.
Hyman
,
J.
Li
, and
E. A.
Stanley
, “
The differential infectivity and staged progression models for the transmission of HIV
,”
Math. Bios.
155
,
77
109
(
1999
).
6.
J.
Li
,
K.
Men
,
Y.
Yang
, and
D.
Li
, “
Dynamical analysis on a chronic hepatitis C virus infection model with immune response
,”
J. Theor. Biol.
365
,
337
346
(
2015
).
7.
I. M.
Longini
,
W. S.
Clark
,
M.
Haber
, and
R.
Horsburgh
, “
The stages of HIV infection: Waiting times and infection transmission probabilities
,”
Math. Stat. App. AIDS Epid.
83
,
111
137
(
1989
).
8.
C. C.
McCluskey
, “
A model of HIV/AIDS with staged progression and amelioration
,”
Math. Bios.
181
,
1
16
(
2003
).
9.
R.
Naresh
,
A.
Tripathi
, and
D.
Sharma
, “
A nonlinear HIV/AIDS model with contact tracing
,”
Appl. Math. Comp.
217
,
9575
9591
(
2011
).
10.
M.
Nowak
and
R. M.
May
,
Virus Dynamics: Mathematical Principles of Immunology and Virology: Mathematical Principles of Immunology and Virology
(
Oxford University Press
,
2000
).
11.
B.
Tang
,
X.
Wang
,
Q.
Li
,
N. L.
Bragazzi
,
S.
Tang
,
Y.
Xiao
, and
J.
Wu
, “
Estimation of the transmission risk of the 2019-nCoV and its implication for public health interventions
,”
J. Clin. Med.
9
,
462
482
(
2020
).
12.
S.
Ansumali
,
S.
Kaushal
,
A.
Kumar
,
M. K.
Prakash
, and
M.
Vidyasagar
, “
Modelling a pandemic with asymptomatic patients, impact of lockdown and herd immunity, with applications to SARS-CoV-2
,”
Ann. Rev. Control
50
,
432
447
(
2020
).
13.
P.
Song
,
Y.
Lou
,
L.
Zhu
,
W.
Li
, and
H.
Jiang
, “
Multi-stage and multi-scale patch model and the case study of novel coronavirus
,”
Act. Math. Appl. Sin.
43
,
174
199
(
2020
) (in Chinese).
14.
S. M.
Salihu
,
Z.
Gao
,
S.
Zhao
,
L.
Yang
,
Y.
Lou
, and
D.
He
, “
Dynamical model of emerging infectious diseases-applied to COVID-19 transmission
,”
Act. Math. Appl. Sin.
43
,
350
364
(
2020
) (in Chinese).
15.
J.
Cui
,
J.
Lv
,
S.
Guo
, and
T.
Chen
, “
Mechanistic modeling of the coronavirus disease 2019 outbreak in the early phase in Wuhan
,”
Acta. Math. Appl. Sin.
43
,
147
155
(
2020
) (in Chinese).
16.
X.
Rong
,
L.
Yang
,
H.
Chu
,
L.
Zhou
,
M.
Chen
,
M.
Fan
, and
H.
Zhu
, “
Effect of healthcare staff on the prevention and control of COVID-19
,”
Act. Math. Appl. Sin.
43
,
335
349
(
2020
) (in Chinese).
17.
G. C.
Calafiore
,
C.
Novara
, and
C.
Possieri
, “
A time-varying SIRD model for the COVID-19 contagion in Italy
,”
Ann. Rev. Control
50
,
361
372
(
2020
).
18.
D.
Faranda
and
T.
Alberti
, “
Modeling the second wave of COVID-19 infections in France and Italy via a stochastic SEIR model
,”
Chaos
30
,
111101
(
2020
).
19.
Q.
Liu
,
D.
Jiang
,
T.
Hayat
, and
A.
Alsaedi
, “
Long-time behavior of a stochastic logistic equation with distributed delay and nonlinear perturbation
,”
Phys. Stat. Mech. Appl.
508
,
289
304
(
2018
).
20.
F.
Rao
and
J.
Luo
, “
Stochastic effects on an HIV/AIDS infection model with incomplete diagnosis
,”
Chaos Soliton. Fract.
152
,
111344
(
2021
).
21.
X.
Wang
,
Y.
Tan
,
Y.
Cai
,
K.
Wang
, and
W.
Wang
, “
Dynamics of a stochastic HBV infection model with cell-to-cell transmission and immune response
,”
Math. Bios. Eng.
18
,
616
642
(
2021
).
22.
A.
Aganovic
,
Y.
Bi
,
G.
Cao
,
F.
Drangsholta
, and
J.
Kurnitski
, “
Estimating the impact of indoor relative humidity on SARS-CoV-2 airborne transmission risk using a new modification of the Wells-Riley model
,”
Build. Environ.
205
,
108278
(
2021
).
23.
J.
Zhuo
and
H.
Wang
,
Matlab: Mathematical Modeling Methods and Practice
, 3rd. (
Beihang University Press
,
Beijing
,
2018
) (in Chinese).
24.
R.
Rudnicki
,
K.
Pichór
, and
M. T.
Kamińska
, “
Markov semigroups and their applications
,”
Lect. Notes Phys.
597
,
215
238
(
2002
).
25.
X.
Mao
,
Stochastic Differential Equations and Applications
(
Elsevier
,
Chichester
,
2007
).
26.
J.
Dieudonne
, “
Sur le théoréme de Radon–Nikodym
,”
Ann. Univ. Grenoble
23
,
25
53
(
1948
).
27.
P.
Hennequin
and
A.
Tortrat
,
Theorie des Probabilities et Quelques Applications
(
Masson et Cie
,
Paris
,
1965
).
28.
D. J.
Higham
, “
An algorithmic introduction to numerical simulation of stochastic differential equations
,”
SIAM Rev.
43
,
525
546
(
2001
).
29.
Z.
Zu
,
M.
Jiang
,
P.
Xu
,
W.
Chen
,
Q.
Ni
,
G.
Lu
, and
L.
Zhang
, “
Coronavirus disease 2019 (COVID-19): A perspective from China
,”
Radiology
296
(
2
),
E15
E25
(
2020
).
30.
K. D.
Elworthy
and
N.
Ikeda
, in Asymptotic Problems in Probability Theory: Wiener Functionals and Asymptotics: Proceedings of the Taniguchi International Symposium (Longman Scientific & Technical, Sanda and Kyoto, 1993).
31.
S. M.
Garba
,
A. B.
Gumel
, and
M. R. A.
Bakar
, “
Backward bifurcation in dengue transmission dynamics
,”
Math. Bios.
215
,
11
25
(
2008
).
32.
L.
Zou
and
S.
Ruan
, “
A patch model of COVID-19: The effects of containment on chongqing
,”
Act. Math. Appl. Sin.
43
,
310
323
(
2020
) (in Chinese).
You do not currently have access to this content.