We study operator growth in a bipartite kicked coupled tops (KCTs) system using out-of-time ordered correlators (OTOCs), which quantify “information scrambling” due to chaotic dynamics and serve as a quantum analog of classical Lyapunov exponents. In the KCT system, chaos arises from the hyper-fine coupling between the spins. Due to a conservation law, the system’s dynamics decompose into distinct invariant subspaces. Focusing initially on the largest subspace, we numerically verify that the OTOC growth rate aligns well with the classical Lyapunov exponent for fully chaotic dynamics. While previous studies have largely focused on scrambling in fully chaotic dynamics, works on mixed-phase space scrambling are sparse. We explore scrambling behavior in both mixed-phase space and globally chaotic dynamics. In the mixed-phase space, we use Percival’s conjecture to partition the eigenstates of the Floquet map into “regular” and “chaotic.” Using these states as the initial states, we examine how their mean phase space locations affect the growth and saturation of the OTOCs. Beyond the largest subspace, we study the OTOCs across the entire system, including all other smaller subspaces. For certain initial operators, we analytically derive the OTOC saturation using random matrix theory (RMT). When the initial operators are chosen randomly from the unitarily invariant random matrix ensembles, the averaged OTOC relates to the linear entanglement entropy of the Floquet operator, as found in earlier works. For the diagonal Gaussian initial operators, we provide a simple expression for the OTOC.

1.
F.
Haake
, “Quantum signatures of chaos,” in Quantum Coherence in Mesoscopic Systems (Springer, 1991), pp. 583–595.
2.
J. N.
Bandyopadhyay
and
A.
Lakshminarayan
, “
Testing statistical bounds on entanglement using quantum chaos
,”
Phys. Rev. Lett.
89
,
060402
(
2002
).
3.
J. N.
Bandyopadhyay
and
A.
Lakshminarayan
, “
Entanglement production in coupled chaotic systems: Case of the kicked tops
,”
Phys. Rev. E.
69
,
016201
(
2004
).
4.
J.
Maldacena
,
S. H.
Shenker
, and
D.
Stanford
, “
A bound on chaos
,”
J. High Energy Phys.
2016
,
106
.
5.
P.
Hosur
,
X.-L.
Qi
,
D. A.
Roberts
, and
B.
Yoshida
, “
Chaos in quantum channels
,”
J. High Energy Phys.
2016
,
4
.
6.
A.
Larkin
and
Y. N.
Ovchinnikov
, “
Quasiclassical method in the theory of superconductivity
,”
Sov. Phys. JETP
28
,
1200
1205
(
1969
).
7.
A.
Nahum
,
S.
Vijay
, and
J.
Haah
, “
Operator spreading in random unitary circuits
,”
Phys. Rev. X.
8
,
021014
(
2018
).
8.
C.
Von Keyserlingk
,
T.
Rakovszky
,
F.
Pollmann
, and
S. L.
Sondhi
, “
Operator hydrodynamics, otocs, and entanglement growth in systems without conservation laws
,”
Phys. Rev. X.
8
,
021013
(
2018
).
9.
V.
Khemani
,
A.
Vishwanath
, and
D. A.
Huse
, “
Operator spreading and the emergence of dissipative hydrodynamics under unitary evolution with conservation laws
,”
Phys. Rev. X.
8
,
031057
(
2018
).
10.
T.
Rakovszky
,
F.
Pollmann
, and
C.
von Keyserlingk
, “
Diffusive hydrodynamics of out-of-time-ordered correlators with charge conservation
,”
Phys. Rev. X.
8
,
031058
(
2018
).
11.
C.-J.
Lin
and
O. I.
Motrunich
, “
Out-of-time-ordered correlators in a quantum Ising chain
,”
Phys. Rev. B.
97
,
144304
(
2018
).
12.
A.
Seshadri
,
V.
Madhok
, and
A.
Lakshminarayan
, “
Tripartite mutual information, entanglement, and scrambling in permutation symmetric systems with an application to quantum chaos
,”
Phys. Rev. E.
98
,
052205
(
2018
).
13.
A.
Lakshminarayan
, “
Out-of-time-ordered correlator in the quantum bakers map and truncated unitary matrices
,”
Phys. Rev. E.
99
,
012201
(
2019
).
14.
S. H.
Shenker
and
D.
Stanford
, “
Black holes and the butterfly effect
,”
J. High Energy Phys.
2014
,
67
.
15.
S.
Moudgalya
,
T.
Devakul
,
C.
Von Keyserlingk
, and
S.
Sondhi
, “
Operator spreading in quantum maps
,”
Phys. Rev. B.
99
,
094312
(
2019
).
16.
I. L.
Aleiner
,
L.
Faoro
, and
L. B.
Ioffe
, “
Microscopic model of quantum butterfly effect: Out-of-time-order correlators and traveling combustion waves
,”
Ann. Phys.
375
,
378
406
(
2016
).
17.
I.
Kukuljan
,
S.
Grozdanov
, and
T.
Prosen
, “
Weak quantum chaos
,”
Phys. Rev. B.
96
,
060301
(
2017
).
18.
J.
Cotler
,
N.
Hunter-Jones
,
J.
Liu
, and
B.
Yoshida
, “
Chaos, complexity, and random matrices
,”
J. High Energy Phys.
2017
,
1
60
.
19.
R.
Fan
,
P.
Zhang
,
H.
Shen
, and
H.
Zhai
, “
Out-of-time-order correlation for many-body localization
,”
Sci. Bull.
62
,
707
711
(
2017
).
20.
Y.
Chen
, “Universal logarithmic scrambling in many body localization,” arXiv:1608.02765 (2016).
21.
B.
Swingle
and
D.
Chowdhury
, “
Slow scrambling in disordered quantum systems
,”
Phys. Rev. B.
95
,
060201
(
2017
).
22.
Y.
Huang
,
Y.-L.
Zhang
, and
X.
Chen
, “
Out-of-time-ordered correlators in many-body localized systems
,”
Ann. Phys.
529
,
1600318
(
2017
).
23.
S.
Pg
,
N. D.
Varikuti
, and
V.
Madhok
, “
Exponential speedup in measuring out-of-time-ordered correlators and gate fidelity with a single bit of quantum information
,”
Phys. Lett. A.
397
,
127257
(
2021
).
24.
D. A.
Roberts
,
D.
Stanford
, and
L.
Susskind
, “
Localized shocks
,”
J. High Energy Phys.
2015
,
51
.
25.
S. H.
Shenker
and
D.
Stanford
, “
Multiple shocks
,”
J. High Energy Phys.
2014
,
46
.
26.
E. B.
Rozenbaum
,
S.
Ganeshan
, and
V.
Galitski
, “
Lyapunov exponent and out-of-time-ordered correlator’s growth rate in a chaotic system
,”
Phys. Rev. Lett.
118
,
086801
(
2017
).
27.
R.
Prakash
and
A.
Lakshminarayan
, “
Scrambling in strongly chaotic weakly coupled bipartite systems: Universality beyond the ehrenfest timescale
,”
Phys. Rev. B.
101
,
121108
(
2020
).
28.
R. A.
Jalabert
,
I.
García-Mata
, and
D. A.
Wisniacki
, “
Semiclassical theory of out-of-time-order correlators for low-dimensional classically chaotic systems
,”
Phys. Rev. E.
98
,
062218
(
2018
).
29.
I.
García-Mata
,
M.
Saraceno
,
R. A.
Jalabert
,
A. J.
Roncaglia
, and
D. A.
Wisniacki
, “
Chaos signatures in the short and long time behavior of the out-of-time ordered correlator
,”
Phys. Rev. Lett.
121
,
210601
(
2018
).
30.
X.
Chen
and
T.
Zhou
, “Operator scrambling and quantum chaos,” arXiv:1804.08655 (2018).
31.
F. M.
Haehl
,
R.
Loganayagam
,
P.
Narayan
, and
M.
Rangamani
, “
Classification of out-of-time-order correlators
,”
Sci. Post Phys.
6
,
1701
02820
(
2019
).
32.
X.
Chen
,
T.
Zhou
,
D. A.
Huse
, and
E.
Fradkin
, “
Out-of-time-order correlations in many-body localized and thermal phases
,”
Annalen der Phys.
529
,
1600332
(
2017
).
33.
S.
Omanakuttan
and
A.
Lakshminarayan
, “
Out-of-time-ordered correlators and quantum walks
,”
Phys. Rev. E.
99
,
062128
(
2019
).
34.
J. R. G.
Alonso
,
N. Y.
Halpern
, and
J.
Dressel
, “
Out-of-time-ordered-correlator quasiprobabilities robustly witness scrambling
,”
Phys. Rev. Lett.
122
,
040404
(
2019
).
35.
F.
Borgonovi
,
F. M.
Izrailev
, and
L. F.
Santos
, “
Timescales in the quench dynamics of many-body quantum systems: Participation ratio versus out-of-time ordered correlator
,”
Phys. Rev. E.
99
,
052143
(
2019
).
36.
B.
Yan
,
L.
Cincio
, and
W. H.
Zurek
, “
Information scrambling and loschmidt echo
,”
Phys. Rev. Lett.
124
,
160603
(
2020
).
37.
E. B.
Rozenbaum
,
L. A.
Bunimovich
, and
V.
Galitski
, “
Early-time exponential instabilities in nonchaotic quantum systems
,”
Phys. Rev. Lett.
125
,
014101
(
2020
).
38.
E. B.
Rozenbaum
,
S.
Ganeshan
, and
V.
Galitski
, “
Universal level statistics of the out-of-time-ordered operator
,”
Phys. Rev. B.
100
,
035112
(
2019
).
39.
A.
Lerose
and
S.
Pappalardi
, “
Bridging entanglement dynamics and chaos in semiclassical systems
,”
Phys. Rev. A.
102
,
032404
(
2020
).
40.
K.
Hashimoto
,
K.-B.
Huh
,
K.-Y.
Kim
, and
R.
Watanabe
, “
Exponential growth of out-of-time-order correlator without chaos: Inverted harmonic oscillator
,”
J. High Energy Phys.
2020
,
1
25
.
41.
S.
Pilatowsky-Cameo
,
J.
Chávez-Carlos
,
M. A.
Bastarrachea-Magnani
,
P.
Stránskỳ
,
S.
Lerma-Hernández
,
L. F.
Santos
, and
J. G.
Hirsch
, “
Positive quantum lyapunov exponents in experimental systems with a regular classical limit
,”
Phys. Rev. E.
101
,
010202
(
2020
).
42.
S.
Pappalardi
,
A.
Russomanno
,
B.
Žunkovič
,
F.
Iemini
,
A.
Silva
, and
R.
Fazio
, “
Scrambling and entanglement spreading in long-range spin chains
,”
Phys. Rev. B.
98
,
134303
(
2018
).
43.
Q.
Hummel
,
B.
Geiger
,
J. D.
Urbina
, and
K.
Richter
, “
Reversible quantum information spreading in many-body systems near criticality
,”
Phys. Rev. Lett.
123
,
160401
(
2019
).
44.
T.
Xu
,
T.
Scaffidi
, and
X.
Cao
, “
Does scrambling equal chaos?
Phys. Rev. Lett.
124
,
140602
(
2020
).
45.
C.
Murthy
and
M.
Srednicki
, “
Bounds on chaos from the eigenstate thermalization hypothesis
,”
Phys. Rev. Lett.
123
,
230606
(
2019
).
46.
R.
de Mello Koch
,
J.-H.
Huang
,
C.-T.
Ma
, and
H. J.
Van Zyl
, “
Spectral form factor as an otoc averaged over the heisenberg group
,”
Phys. Lett. B.
795
,
183
187
(
2019
).
47.
G.
Styliaris
,
N.
Anand
, and
P.
Zanardi
, “
Information scrambling over bipartitions: Equilibration, entropy production, and typicality
,”
Phys. Rev. Lett.
126
,
030601
(
2021
).
48.
D. A.
Roberts
and
B.
Yoshida
, “
Chaos and complexity by design
,”
J. High Energy Phys.
2017
,
1
64
.
49.
P.
Sreeram
,
V.
Madhok
, and
A.
Lakshminarayan
, “
Out-of-time-ordered correlators and the loschmidt echo in the quantum kicked top: How low can we go?
,”
J. Phys. D: Appl. Phys.
54
,
274004
(
2021
).
50.
P.
Hayden
and
J.
Preskill
, “
Black holes as mirrors: Quantum information in random subsystems
,”
J. High Energy Phys.
2007
,
120
(
2007
).
51.
R.
Prakash
and
A.
Lakshminarayan
, “Out-of-time-order correlators in bipartite nonintegrable systems,” arXiv:1911.02829 (2019).
52.
D.
Mondal
,
S.
Sinha
, and
S.
Sinha
, “
Dynamical route to ergodicity and quantum scarring in kicked coupled top
,”
Phys. Rev. E.
104
,
024217
(
2021
).
53.
T.
Notenson
,
I.
García-Mata
,
A. J.
Roncaglia
, and
D. A.
Wisniacki
, “
Classical approach to equilibrium of out-of-time ordered correlators in mixed systems
,”
Phys. Rev. E.
107
,
064207
(
2023
).
54.
P. D.
Bergamasco
,
G. G.
Carlo
, and
A. M.
Rivas
, “
Out-of-time ordered correlators, complexity, and entropy in bipartite systems
,”
Phys. Rev. Res.
1
,
033044
(
2019
).
55.
N.
Roy
and
A.
Sharma
, “
Entanglement entropy and out-of-time-order correlator in the long-range aubry–andré–harper model
,”
J. Phys.: Condens. Matter.
33
,
334001
(
2021
).
56.
R.
Kidd
,
A.
Safavi-Naini
, and
J.
Corney
, “
Saddle-point scrambling without thermalization
,”
Phys. Rev. A.
103
,
033304
(
2021
).
57.
R. A.
Kidd
,
A.
Safavi-Naini
, and
J. F.
Corney
, “
Thermalization in a bose-hubbard dimer with modulated tunneling
,”
Phys. Rev. A.
102
,
023330
(
2020
).
58.
N.
Rosenzweig
and
C. E.
Porter
, “
‘repulsion of energy levels’ in complex atomic spectra
,”
Phys. Rev.
120
,
1698
(
1960
).
59.
M. V.
Berry
and
M.
Robnik
, “
Semiclassical level spacings when regular and chaotic orbits coexist
,”
J. Phys. A: Math. Gen.
17
,
2413
(
1984
).
60.
T.
Prosen
and
M.
Robnik
, “
Semiclassical energy level statistics in the transition region between integrability and chaos: Transition from brody-like to berry-robnik behaviour
,”
J. Phys. A: Math. Gen.
27
,
8059
(
1994
).
61.
M.
Robnik
, “Topics in quantum chaos of generic systems,” arXiv:nlin/0003058 (2000).
62.
V.
Kravtsov
,
I.
Khaymovich
,
E.
Cuevas
, and
M.
Amini
, “
A random matrix model with localization and ergodic transitions
,”
New. J. Phys.
17
,
122002
(
2015
).
63.
M.
Lombardi
and
A.
Matzkin
, “
Entanglement and chaos in the kicked top
,”
Phys. Rev. E
83
,
016207
(
2011
).
64.
V.
Madhok
, “
Comment on “entanglement and chaos in the kicked top”
,”
Phys. Rev. E
92
,
036901
(
2015
).
65.
I.
Percival
, “
Regular and irregular spectra
,”
J. Phys. B: At. Mol. Phys.
6
,
L229
(
1973
).
66.
X.
Chen
,
R. M.
Nandkishore
, and
A.
Lucas
, “
Quantum butterfly effect in polarized floquet systems
,”
Phys. Rev. B.
101
,
064307
(
2020
).
67.
J.
Kudler-Flam
,
R.
Sohal
, and
L.
Nie
, “Information scrambling with conservation laws,” arXiv:2107.04043 (2021).
68.
G.
Cheng
and
B.
Swingle
, “Scrambling with conservation law,” arXiv:2103.07624 (2021).
69.
V.
Balachandran
,
G.
Benenti
,
G.
Casati
, and
D.
Poletti
, “
From the eigenstate thermalization hypothesis to algebraic relaxation of otocs in systems with conserved quantities
,”
Phys. Rev. B
104
,
104306
(
2021
).
70.
C. M.
Trail
,
V.
Madhok
, and
I. H.
Deutsch
, “
Entanglement and the generation of random states in the quantum chaotic dynamics of kicked coupled tops
,”
Phys. Rev. E.
78
,
046211
(
2008
).
71.
M.
Feingold
and
A.
Peres
, “
Regular and chaotic motion of coupled rotators
,”
Physica D
9
,
433
438
(
1983
).
72.
Y.
Fan
,
S.
Gnutzmann
,
Y.
Liang
et al., “
Quantum chaos for nonstandard symmetry classes in the feingold-peres model of coupled tops
,”
Phys. Rev. E
96
,
062207
(
2017
).
73.
G.
Benettin
,
L.
Galgani
,
A.
Giorgilli
, and
J.-M.
Strelcyn
, “
Lyapunov characteristic exponents for smooth dynamical systems and for hamiltonian systems; a method for computing all of them. part 1: Theory
,”
Meccanica
15
,
9
20
(
1980
).
74.
S. P.
Kuznetsov
,
Hyperbolic Chaos
(
Springer
,
2012
).
75.
V.
Constantoudis
and
N.
Theodorakopoulos
, “
Lyapunov exponent, stretching numbers, and islands of stability of the kicked top
,”
Phys. Rev. E
56
,
5189
5194
(
1997
).
76.
F. J.
Dyson
, “
The threefold way. algebraic structure of symmetry groups and ensembles in quantum mechanics
,”
J. Math. Phys.
3
,
1199
1215
(
1962
).
77.
J.
Bensa
and
M.
Žnidarič
, “
Two-step phantom relaxation of out-of-time-ordered correlations in random circuits
,”
Phys. Rev. Res.
4
,
013228
(
2022
).
78.
P. W.
Claeys
and
A.
Lamacraft
, “
Maximum velocity quantum circuits
,”
Phys. Rev. Res.
2
,
033032
(
2020
).
79.
J.
Polchinski
, “Chaos in the black hole s-matrix,” arXiv:1505.08108 (2015).
80.
T.
Gorin
,
H.
Korsch
, and
B.
Mirbach
, “
Phase-space localization and level spacing distributions for a driven rotor with mixed regular/chaotic dynamics
,”
Chem. Phys.
217
,
145
153
(
1997
).
81.
M.
Steinhuber
,
P.
Schlagheck
,
J. D.
Urbina
, and
K.
Richter
, “
Dynamical transition from localized to uniform scrambling in locally hyperbolic systems
,”
Phys. Rev. E
108
,
024216
(
2023
).
82.
P. A.
Miller
and
S.
Sarkar
, “
Signatures of chaos in the entanglement of two coupled quantum kicked tops
,”
Phys. Rev. E
60
,
1542
(
1999
).
83.
S.
Ghose
and
B. C.
Sanders
, “
Entanglement dynamics in chaotic systems
,”
Phys. Rev. A
70
,
062315
(
2004
).
84.
X.
Wang
,
S.
Ghose
,
B. C.
Sanders
, and
B.
Hu
, “
Entanglement as a signature of quantum chaos
,”
Phys. Rev. E
70
,
016217
(
2004
).
85.
S.
Dogra
,
V.
Madhok
, and
A.
Lakshminarayan
, “
Quantum signatures of chaos, thermalization, and tunneling in the exactly solvable few-body kicked top
,”
Phys. Rev. E
99
,
062217
(
2019
).
86.
V.
Madhok
,
V.
Gupta
,
D.-A.
Trottier
, and
S.
Ghose
, “
Signatures of chaos in the dynamics of quantum discord
,”
Phys. Rev. E
91
,
032906
(
2015
).
87.
V.
Madhok
,
C. A.
Riofrío
,
S.
Ghose
, and
I. H.
Deutsch
, “
Information gain in tomography–a quantum signature of chaos
,”
Phys. Rev. Lett.
112
,
014102
(
2014
).
88.
V.
Madhok
,
C. A.
Riofrío
, and
I. H.
Deutsch
, “
Characterizing and quantifying quantum chaos with quantum tomography
,”
Pramana
87
,
1
13
(
2016
).
89.
P.
Brouwer
and
C.
Beenakker
, “
Diagrammatic method of integration over the unitary group, with applications to quantum transport in mesoscopic systems
,”
J. Math. Phys.
37
,
4904
4934
(
1996
).
90.
N.
Anand
,
G.
Styliaris
,
M.
Kumari
, and
P.
Zanardi
, “
Quantum coherence as a signature of chaos
,”
Phys. Rev. Res.
3
,
023214
(
2021
).
91.
L.
Zhang
, “Matrix integrals over unitary groups: An application of Schur-Weyl duality,” arXiv:1408.3782 (2014).
92.
S. P.
Kelly
,
E.
Timmermans
, and
S.-W.
Tsai
, “
Thermalization and its breakdown for a large nonlinear spin
,”
Phys. Rev. A
102
,
052210
(
2020
).
93.
M.
Lambert
,
S.-W.
Tsai
, and
S. P.
Kelly
, “Quantum memory at an eigenstate phase transition in a weakly chaotic model,” arXiv:2112.07631 (2021).
94.
N.
Dowling
,
P.
Kos
, and
K.
Modi
, “
Scrambling is necessary but not sufficient for chaos
,”
Phys. Rev. Lett.
131
,
180403
(
2023
).
95.
L. M.
Sieberer
,
T.
Olsacher
,
A.
Elben
,
M.
Heyl
,
P.
Hauke
,
F.
Haake
, and
P.
Zoller
, “
Digital quantum simulation, trotter errors, and quantum chaos of the kicked top
,”
npj Q. Inform.
5
,
1
11
(
2019
).
You do not currently have access to this content.