We present and demonstrate a method to produce quantitative and qualitative descriptions of transient dynamics from empirical data, with the purpose of analyzing a novel transient discovered in liquid crystal electroconvection. By constructing a tensor bundle around an exemplar transient and creating a chart at every step aligned with the direction of propagation, we show that the Jacobian estimation problem can be reduced by a single dimension, relaxing data requirements and clarifying results. We apply this analysis to identify the onset of a boundary crisis in a predator–prey model. The resulting tensor bundle estimated from image data taken during a dynamical phase transition in a nematic liquid crystal details the behavior of the system along that trajectory, allowing topological analysis. Using this method, we quantify a saddle point in the phase space that drives the initial dynamics during a sudden increase in the driving voltage.

1.
A.
Zhakatayev
,
B.
Rakhim
,
O.
Adiyatov
,
A.
Baimyshev
, and
H. A.
Varol
, “
Successive linearization based model predictive control of variable stiffness actuated robots
,
” in
2017 IEEE international conference on advanced intelligent mechatronics (AIM)
(
IEEE
,
2017
).
2.
J. A.
Martinez-Velasco
,
Transient Analysis of Power Systems: Solution Techniques, Tools and Applications
(
John Wiley & Sons
,
2014
).
3.
N.
Duffie
,
A.
Chehade
, and
A.
Athavale
, “
Control theoretical modeling of transient behavior of production planning and control: A review
,”
Procedia CIRP
17
,
20
25
(
2014
).
4.
S.
Huet
,
E.
Karatekin
,
V. S.
Tran
,
I.
Fanget
,
S.
Cribier
, and
J. P.
Henry
, “
Analysis of transient behavior in complex trajectories: Application to secretory vesicle dynamics
,”
Biophys. J.
91
(
9
),
3542
3559
(
2006
).
5.
J. H.
Peel
,
M. J.
Daum
,
R. T.
Cerbus
, and
J. R.
Cressman
, “Transient power dynamics in nematic electroconvection,”
Chaos
33
(
12
),
121103
(
2023
).
6.
Y.-C.
Lai
and
Z.
Liu
, “
Effect of noise on the neutral direction of chaotic attractor
,”
Chaos
14
(
1
),
189
192
(
2004
).
7.
N. E.
Steenrod
,
The Topology of Fibre Bundles
(
Princeton University
,
Princeton, NJ
,
1951
).
8.
L.
Scoccola
and
J. A.
Perea
, “
Approximate and discrete Euclidean vector bundles
,”
Forum Math., Sigma
11
, e20 (
2023
). Cambridge University Press.
9.
L.
Scoccola
and
J. A.
Perea
, “
Fibered: Fiberwise dimensionality reduction of topologically complex data with vector bundles
.” in
39th International Symposium on Computational Geometry (SoCG 2023)
(
Schloss Dagstuhl
,
Leibniz-Zentrum für Informatik
,
2023
).
10.
S. V.
de Souza
and
R. G.
Junqueira
, “
A procedure to assess linearity by ordinary least squares method
,”
Anal. Chim. Acta
552
(
1–2
),
25
35
(
2005
).
11.
S. E.
Williamson
, “
Accurate root locus plotting including the effects of pure time delay. Computer-program description
,” in
Proceedings of the Institution of Electrical Engineers
(
IET Digital Library
,
1969
), Vol. 116. No.
7
.
12.
U.
Patil
and
U.
Mudengudi
, “
Image fusion using hierarchical PCA
,” in
2011 International Conference on Image Information Processing
(
IEEE
,
2011
).
13.
C.
Grebogi
,
E.
Ott
, and
J. A.
Yorke
, “
Critical exponent of chaotic transients in nonlinear dynamical systems
,”
Phys. Rev. Lett.
57
(
11
),
1284
(
1986
).
14.
P.
Tóth
,
A.
Buka
,
J.
Peinke
, and
L.
Kramer
, “
Dynamics of disordered patterns in electroconvection of homeotropically aligned nematic liquid crystals
,”
Phys. Rev. E
58
(
2
),
1983
(
1998
).
15.
J. A.
Weliwita
,
A. M.
Rucklidge
, and
S. M.
Tobias
, “
Skew-varicose instability in two-dimensional generalized swift-Hohenberg equations
,”
Phys. Rev. E
84
(
3
),
036201
(
2011
).
You do not currently have access to this content.