This paper investigates various bifurcation scenarios of the appearance of bursting activity in the phenomenological mean-field model of neuron–glial interactions. In particular, we show that the homoclinic spiral attractors in this system can be the source of several types of bursting activity with different properties.

1.
S. M.
Olenin
,
T. A.
Levanova
, and
S. V.
Stasenko
, “
Dynamics in the reduced mean-field model of neuron–glial interaction
,”
Mathematics
11
,
2143
(
2023
).
2.
Y.
Chen
,
H.
Douglas
,
B. J.
Medina
,
M.
Olarinre
,
J. H.
Siegle
, and
R. E.
Kass
, “
Population burst propagation across interacting areas of the brain
,”
J. Neurophysiol.
128
,
1578
1592
(
2022
).
3.
M.
Meister
,
R. O.
Wong
,
D. A.
Baylor
, and
C. J.
Shatz
, “
Synchronous bursts of action potentials in ganglion cells of the developing mammalian retina
,”
Science
252
,
939
943
(
1991
).
4.
R.
Krahe
and
F.
Gabbiani
, “
Burst firing in sensory systems
,”
Nat. Rev. Neurosci.
5
,
13
23
(
2004
).
5.
E.
Salinas
and
T. J.
Sejnowski
, “
Correlated neuronal activity and the flow of neural information
,”
Nat. Rev. Neurosci.
2
,
539
550
(
2001
).
6.
N.
Axmacher
,
F.
Mormann
,
G.
Fernández
,
C. E.
Elger
, and
J.
Fell
, “
Memory formation by neuronal synchronization
,”
Brain Res. Rev.
52
,
170
182
(
2006
).
7.
M.
Avoli
and
A.
Olivier
, “
Bursting in human epileptogenic neocortex is depressed by an n-methyl-d-aspartate antagonist
,”
Neurosci. Lett.
76
,
249
254
(
1987
).
8.
K. T.
Hofer
,
Á.
Kandrács
,
K.
Tóth
,
B.
Hajnal
,
V.
Bokodi
,
E. Z.
Tóth
,
L.
Erőss
,
L.
Entz
,
A. G.
Bagó
,
D.
Fabó
et al., “
Bursting of excitatory cells is linked to interictal epileptic discharge generation in humans
,”
Sci. Rep.
12
,
6280
(
2022
).
9.
S. V.
Stasenko
,
A. E.
Hramov
, and
V. B.
Kazantsev
, “
Loss of neuron network coherence induced by virus-infected astrocytes: A model study
,”
Sci. Rep.
13
,
6401
(
2023
).
10.
J. E.
Lisman
, “
Bursts as a unit of neural information: Making unreliable synapses reliable
,”
Trends Neurosci.
20
,
38
43
(
1997
).
11.
E. M.
Izhikevich
,
N. S.
Desai
,
E. C.
Walcott
, and
F. C.
Hoppensteadt
, “
Bursts as a unit of neural information: Selective communication via resonance
,”
Trends Neurosci.
26
,
161
167
(
2003
).
12.
F.
Gabbiani
,
W.
Metzner
,
R.
Wessel
, and
C.
Koch
, “
From stimulus encoding to feature extraction in weakly electric fish
,”
Nature
384
,
564
567
(
1996
).
13.
A.-M. M.
Oswald
,
M. J.
Chacron
,
B.
Doiron
,
J.
Bastian
, and
L.
Maler
, “
Parallel processing of sensory input by bursts and isolated spikes
,”
J. Neurosci.
24
,
4351
4362
(
2004
).
14.
N. A.
Lesica
and
G. B.
Stanley
, “
Encoding of natural scene movies by tonic and burst spikes in the lateral geniculate nucleus
,”
J. Neurosci.
24
,
10731
10740
(
2004
).
15.
P.
Reinagel
,
D.
Godwin
,
S. M.
Sherman
, and
C.
Koch
, “
Encoding of visual information by LGN bursts
,”
J. Neurophysiol.
81
,
2558
2569
(
1999
).
16.
R.
Segev
,
I.
Baruchi
,
E.
Hulata
, and
E.
Ben-Jacob
, “
Hidden neuronal correlations in cultured networks
,”
Phys. Rev. Lett.
92
,
118102
(
2004
).
17.
E.
Hulata
,
I.
Baruchi
,
R.
Segev
,
Y.
Shapira
, and
E.
Ben-Jacob
, “
Self-regulated complexity in cultured neuronal networks
,”
Phys. Rev. Lett.
92
,
198105
(
2004
).
18.
S. V.
Stasenko
and
V. B.
Kazantsev
, “
Information encoding in bursting spiking neural network modulated by astrocytes
,”
Entropy
25
,
745
(
2023
).
19.
S. V.
Stasenko
and
V. B.
Kazantsev
, “
Dynamic image representation in a spiking neural network supplied by astrocytes
,”
Mathematics
11
,
561
(
2023
).
20.
R.
Gast
,
H.
Schmidt
, and
T. R.
Knösche
, “
A mean-field description of bursting dynamics in spiking neural networks with short-term adaptation
,”
Neural Comput.
32
,
1615
1634
(
2020
).
21.
J.
Guckenheimer
,
R.
Harris-Warrick
,
J.
Peck
, and
A.
Willms
, “
Bifurcation, bursting, and spike frequency adaptation
,”
J. Comput. Neurosci.
4
,
257
277
(
1997
).
22.
P.
Kudela
,
P. J.
Franaszczuk
, and
G. K.
Bergey
, “
Changing excitation and inhibition in simulated neural networks: Effects on induced bursting behavior
,”
Biol. Cybern.
88
,
276
285
(
2003
).
23.
F.
Zeldenrust
,
W. J.
Wadman
, and
B.
Englitz
, “
Neural coding with bursts—Current state and future perspectives
,”
Front. Comput. Neurosci.
12
,
48
(
2018
).
24.
E.
Marder
and
V.
Thirumalai
, “
Cellular, synaptic and network effects of neuromodulation
,”
Neural Networks
15
,
479
493
(
2002
).
25.
F.
Zeldenrust
and
W. J.
Wadman
, “
Modulation of spike and burst rate in a minimal neuronal circuit with feed-forward inhibition
,”
Neural Networks
40
,
1
17
(
2013
).
26.
C. v.
Vreeswijk
and
D.
Hansel
, “
Patterns of synchrony in neural networks with spike adaptation
,”
Neural Comput.
13
,
959
992
(
2001
).
27.
H.
Markram
and
M.
Tsodyks
, “
Redistribution of synaptic efficacy between neocortical pyramidal neurons
,”
Nature
382
,
807
810
(
1996
).
28.
T.
Masquelier
and
G.
Deco
, “
Network bursting dynamics in excitatory cortical neuron cultures results from the combination of different adaptive mechanism
,”
PLoS One
8
,
e75824
(
2013
).
29.
M. A.
Rozhnova
,
E. V.
Pankratova
,
S. V.
Stasenko
, and
V. B.
Kazantsev
, “
Bifurcation analysis of multistability and oscillation emergence in a model of brain extracellular matrix
,”
Chaos, Solitons Fractals
151
,
111253
(
2021
).
30.
S. V.
Stasenko
and
V. B.
Kazantsev
, “
Bursting dynamics of spiking neural network induced by active extracellular medium
,”
Mathematics
11
,
2109
(
2023
).
31.
N.
Barabash
,
T.
Levanova
, and
S.
Stasenko
, “Stsp model with neuron-glial interaction produced bursting activity,” in 2021 Third International Conference Neurotechnologies And Neurointerfaces (CNN) (IEEE, 2021), pp. 12–15.
32.
N.
Barabash
,
T.
Levanova
, and
S.
Stasenko
, “
Rhythmogenesis in the mean field model of the neuron–glial network
,”
Eur. Phys. J. Spec. Top.
232
,
1
6
(
2023
).
33.
S. V.
Stasenko
,
I. A.
Lazarevich
, and
V. B.
Kazantsev
, “
Quasi-synchronous neuronal activity of the network induced by astrocytes
,”
Procedia Comput. Sci.
169
,
704
709
(
2020
).
34.
S.
Stasenko
and
V.
Kazantsev
, “3D model of bursting activity generation,” in 2022 Fourth International Conference Neurotechnologies and Neurointerfaces (CNN) (IEEE, 2022), pp. 176–179.
35.
J. M.
Cortes
,
M.
Desroches
,
S.
Rodrigues
,
R.
Veltz
,
M. A.
Muñoz
, and
T. J.
Sejnowski
, “
Short-term synaptic plasticity in the deterministic Tsodyks–Markram model leads to unpredictable network dynamics
,”
Proc. Natl. Acad. Sci. U.S.A.
110
,
16610
16615
(
2013
).
36.
S.
Gonchenko
,
A.
Kazakov
,
D.
Turaev
, and
A. L.
Shilnikov
, “
Leonid Shilnikov and mathematical theory of dynamical chaos
,”
Chaos
32
,
010402
(
2022
).
37.
L. P.
Shilnikov
, “
Bifurcation theory and turbulence
,” in
Nonlinear and Turbulent Processes in Physics
(Harwood Academic Publishers, 1984), p. 1627.
38.
L.
Shil’nikov
, “A case of the existence of a countable number of periodic motions,”
Dokl. Akad. Nauk
160
(3),
558–561
(
1965
)
39.
A.
Pisarchik
,
R.
Meucci
, and
F.
Arecchi
, “
Discrete homoclinic orbits in a laser with feedback
,”
Phys. Rev. E
62
,
8823
(
2000
).
40.
A.
Pisarchik
,
F.
Arecchi
,
R.
Meucci
, and
A.
DiGarbo
, “
Synchronization of Shilnikov chaos in a CO 2 laser with feedback
,”
Laser Phys.
11
,
1235
1239
(
2001
).
41.
A.
Pisarchik
,
R.
Meucci
, and
F.
Arecchi
, “
Theoretical and experimental study of discrete behavior of Shilnikov chaos in a CO 2 laser
,”
Eur. Phys. J. D
13
,
385
391
(
2001
).
42.
F.
Arecchi
,
R.
Meucci
, and
W.
Gadomski
, “
Laser dynamics with competing instabilities
,”
Phys. Rev. Lett.
58
,
2205
(
1987
).
43.
E. A.
Viktorov
,
D. R.
Klemer
, and
M. A.
Karim
, “
Shil’nikov case of antiphase dynamics in a multimode laser
,”
Opt. Commun.
113
,
441
448
(
1995
).
44.
J.
Farjas
,
J.
Rosell
,
R.
Herrero
,
R.
Pons
,
F.
Pi
, and
G.
Orriols
, “
Equivalent low-order model for a nonlinear diffusion equation
,”
Phys. D
95
,
107
127
(
1996
).
45.
S. T.
Kingni
,
L.
Keuninckx
,
P.
Woafo
,
G.
Van der Sande
, and
J.
Danckaert
, “
Dissipative chaos, Shilnikov chaos and bursting oscillations in a three-dimensional autonomous system: Theory and electronic implementation
,”
Nonlinear Dyn.
73
,
1111
1123
(
2013
).
46.
Z.
Njitacke
,
H.
Fotsin
,
A. N.
Negou
,
D.
Tchiotsop
et al., “
Coexistence of multiple attractors and crisis route to chaos in a novel memristive diode bidge-based jerk circuit
,”
Chaos, Solitons Fractals
91
,
180
197
(
2016
).
47.
D.
Dangoisse
,
A.
Bekkali
,
F.
Papoff
, and
P.
Glorieux
, “
Shilnikov dynamics in a passive q-switching laser
,”
Europhys. Lett.
6
,
335
(
1988
).
48.
D.
Hennequin
,
M.
Lefranc
,
A.
Bekkali
,
D.
Dangoisse
, and
P.
Glorieux
, “
Characterization of Shilnikov chaos in a CO 2 laser containing a saturable absorber
,” in
Measures of Complexity and Chaos
(Springer, 1989), pp. 299–302.
49.
F.
de Tomasi
,
D.
Hennequin
,
B.
Zambon
, and
E.
Arimondo
, “
Instabilities and chaos in an infrared laser with saturable absorber: Experiments and vibrorotational model
,”
JOSA B
6
,
45
57
(
1989
).
50.
T. M.
Griffith
,
D.
Parthimos
, and
D. H.
Edwards
, “
Vasomotion: The case for chaos
,”
J. Biorheol.
23
,
11
23
(
2009
).
51.
A. G.
Korotkov
,
A. O.
Kazakov
, and
T. A.
Levanova
, “
Effects of memristor-based coupling in the ensemble of Fitzhugh–Nagumo elements
,”
Eur. Phys. J. Spec. Top.
228
,
2325
2337
(
2019
).
52.
A.
Shilnikov
and
M.
Kolomiets
, “
Methods of the qualitative theory for the Hindmarsh–Rose model: A case study–a tutorial
,”
Int. J. Bifurcation Chaos
18
,
2141
2168
(
2008
).
53.
Y. V.
Bakhanova
,
A. O.
Kazakov
,
A. G.
Korotkov
,
T. A.
Levanova
, and
G. V.
Osipov
, “
Spiral attractors as the root of a new type of ‘bursting activity’ in the Rosenzweig–MacArthur model
,”
Eur. Phys. J. Spec. Top.
227
,
959
970
(
2018
).
54.
R.
Barrio
,
F.
Blesa
,
S.
Serrano
, and
A.
Shilnikov
, “
Global organization of spiral structures in biparameter space of dissipative systems with Shilnikov saddle-foci
,”
Phys. Rev. E
84
,
035201
(
2011
).
55.
M. L.
Rosenzweig
, “
Exploitation in three trophic levels
,”
Am. Nat.
107
,
275
294
(
1973
).
56.
A.
Hastings
and
T.
Powell
, “
Chaos in a three-species food chain
,”
Ecology
72
,
896
903
(
1991
).
57.
P.
Gaspard
and
G.
Nicolis
, “
What can we learn from homoclinic orbits in chaotic dynamics?
,”
J. Stat. Phys.
31
,
499
518
(
1983
).
58.
W. A.
Barnett
,
G.
Bella
,
T.
Ghosh
,
P.
Mattana
, and
B.
Venturi
, “
Shilnikov chaos, low interest rates, and New Keynesian macroeconomics
,”
J. Econ. Dyn. Control
134
,
104291
(
2022
).
59.
G.
Bella
,
P.
Mattana
, and
B.
Venturi
, “
Shilnikov chaos in the Lucas model of endogenous growth
,”
J. Econ. Theory
172
,
451
477
(
2017
).
60.
W.
Wei
,
Z.
Qi-Chang
, and
T.
Rui-Lan
, “
Shilnikov sense chaos in a simple three-dimensional system
,”
Chin. Phys. B
19
,
030517
(
2010
).
61.
M.
Yao
and
W.
Zhang
, “
Multipulse Shilnikov orbits and chaotic dynamics for nonlinear nonplanar motion of a cantilever beam
,”
Int. J. Bifurcation Chaos
15
,
3923
3952
(
2005
).
62.
A. V.
Borisov
,
A. O.
Kazakov
, and
I. R.
Sataev
, “
Spiral chaos in the nonholonomic model of a Chaplygin top
,”
Regul. Chaotic Dyn.
21
,
939
954
(
2016
).
63.
Y. V.
Bakhanova
,
A. O.
Kazakov
,
E. Y.
Karatetskaya
,
A. D.
Kozlov
, and
K.
Saphonov
, “
On homoclinic attractors of three-dimensional flows
,”
Izv. VUZ Appl. Nonlinear Dyn.
28
,
231
258
(
2020
).
64.
Y. V.
Bakhanova
,
S.
Gonchenko
,
A.
Gonchenko
,
A.
Kazakov
, and
E.
Samylina
, “
On Shilnikov attractors of three-dimensional flows and maps
,”
J. Differ. Equ. Appl.
29
,
1184
1201
(
2023
).
65.
S.
Malykh
,
Y.
Bakhanova
,
A.
Kazakov
,
K.
Pusuluri
, and
A.
Shilnikov
, “
Homoclinic chaos in the Rössler model
,”
Chaos
30
,
113126
(
2020
).
66.
E.
Karatetskaia
,
A.
Shykhmamedov
, and
A.
Kazakov
, “
Shilnikov attractors in three-dimensional orientation-reversing maps
,”
Chaos
31
,
011102
(
2021
).
67.
G.
Mongillo
,
O.
Barak
, and
M.
Tsodyks
, “
Synaptic theory of working memory
,”
Science
319
,
1543
1546
(
2008
).
68.
I. A.
Lazarevich
,
S.
Stasenko
, and
V. B.
Kazantsev
, “
Synaptic multistability and network synchronization induced by the neuron–glial interaction in the brain
,”
JETP Lett.
105
,
210
213
(
2017
).
69.
H. R.
Wilson
and
J. D.
Cowan
, “
Excitatory and inhibitory interactions in localized populations of model neurons
,”
Biophys. J.
12
,
1
24
(
1972
).
70.
M.
Tsodyks
,
K.
Pawelzik
, and
H.
Markram
, “
Neural networks with dynamic synapses
,”
Neural Comput.
10
,
821
835
(
1998
).
71.
S. Y.
Gordleeva
, “
Bi-directional astrocytic regulation of neuronal activity within a network
,”
Front. Comput. Neurosci.
6
,
92
(
2012
).
72.
A.
Araque
,
V.
Parpura
,
R. P.
Sanzgiri
, and
P. G.
Haydon
, “
Tripartite synapses: Glia, the unacknowledged partner
,”
Trends Neurosci.
22
,
208
215
(
1999
).
73.
S.
Gonchenko
,
D.
Li
, and
D.
Turaev
, “Universal bifurcation patterns in the unfolding of a pair of homoclinic tangencies,” arXiv:2212.03964 (2022).
74.
R.
Veltz
, see https://hal.archives-ouvertes.fr/hal-02902346 for “BifurcationKit.jl” (2020).
75.
A.
Dhooge
,
W.
Govaerts
, and
Y. A.
Kuznetsov
, “
Matcont: A Matlab package for numerical bifurcation analysis of ODEs
,”
ACM Trans. Math. Software
29
,
141
164
(
2003
).
76.
Y. A.
Kuznetsov
,
I. A.
Kuznetsov
, and
Y.
Kuznetsov
,
Elements of Applied Bifurcation Theory
(
Springer
,
1998
), Vol. 112.
77.
Y.
Pomeau
and
P.
Manneville
, “
Intermittent transition to turbulence in dissipative dynamical systems
,”
Commun. Math. Phys.
74
,
189
197
(
1980
).
78.
A. S.
Gonchenko
,
S. V.
Gonchenko
, and
L. P.
Shilnikov
, “Towards scenarios of chaos appearance in three-dimensional maps”
Russ. J. Nonlinear Dyn.
8
(1),
3–28
(2012).
79.
A.
Gonchenko
,
S.
Gonchenko
,
A.
Kazakov
, and
D.
Turaev
, “
Simple scenarios of onset of chaos in three-dimensional maps
,”
Int. J. Bifurcation Chaos
24
,
1440005
(
2014
).
80.
S. V.
Gonchenko
,
A. S.
Gonchenko
,
A. O.
Kazakov
,
A. D.
Kozlov
, and
Y. V.
Bakhanova
, “
Mathematical theory of dynamical chaos and its applications: Review. Part 2. Spiral chaos of three-dimensional flows
,”
Izv. VUZ Appl. Nonlinear Dyn.
27
,
7
52
(
2019
).
81.
O. E.
Rössler
, “
Continuous chaos—Four prototype equations
,”
Ann. N. Y. Acad. Sci.
316
,
376
392
(
1979
).
82.
F.
Argoul
,
A.
Arneodo
, and
P.
Richetti
, “
Experimental evidence for homoclinic chaos in the Belousov-Zhabotinskii reaction
,”
Phys. Lett. A
120
,
269
275
(
1987
).
83.
C.
Letellier
,
P.
Dutertre
, and
B.
Maheu
, “
Unstable periodic orbits and templates of the Rössler system: Toward a systematic topological characterization
,”
Chaos
5
,
271
282
(
1995
).
84.
J. L.
Hindmarsh
and
R.
Rose
, “
A model of neuronal bursting using three coupled first order differential equations
,”
Proc. R. Soc. B
221
,
87
102
(
1984
).
85.
R.
Brette
,
M.
Rudolph
,
T.
Carnevale
,
M.
Hines
,
D.
Beeman
,
J. M.
Bower
,
M.
Diesmann
,
A.
Morrison
,
P. H.
Goodman
,
F. C.
Harris
et al., “
Simulation of networks of spiking neurons: A review of tools and strategies
,”
J. Comput. Neurosci.
23
,
349
398
(
2007
).
86.
E. M.
Izhikevich
and
G. M.
Edelman
, “
Large-scale model of mammalian thalamocortical systems
,”
Proc. Natl. Acad. Sci. U.S.A.
105
,
3593
3598
(
2008
).
87.
E. M.
Izhikevich
,
Dynamical Systems in Neuroscience
(
MIT Press
,
2007
).
88.
E.
Montbrió
,
D.
Pazó
, and
A.
Roxin
, “
Macroscopic description for networks of spiking neurons
,”
Phys. Rev. X
5
,
021028
(
2015
).
89.
A.
Lebedeva
,
K.
Maltseva
,
N.
Barabash
,
R.
Sokolov
,
A.
Rozov
, and
T.
Levanova
, “The effect of astrocytes in synaptic transmission and rhythmogenesis in hippocampus,” in 2023 Fifth International Conference Neurotechnologies and Neurointerfaces (CNN) (IEEE, 2023), pp. 42–46.
90.
D. A.
Wagenaar
,
Z.
Nadasdy
, and
S. M.
Potter
, “
Persistent dynamic attractors in activity patterns of cultured neuronal networks
,”
Phys. Rev. E
73
,
051907
(
2006
).
91.
M.
Rabinovich
and
H.
Abarbanel
, “
The role of chaos in neural systems
,”
Neuroscience
87
,
5
14
(
1998
).
You do not currently have access to this content.