A persistent challenge in tasks involving large-scale dynamical systems, such as state estimation and error reduction, revolves around processing the collected measurements. Frequently, these data suffer from the curse of dimensionality, leading to increased computational demands in data processing methodologies. Recent scholarly investigations have underscored the utility of delineating collective states and dynamics via moment-based representations. These representations serve as a form of sufficient statistics for encapsulating collective characteristics, while simultaneously permitting the retrieval of individual data points. In this paper, we reshape the Kalman filter methodology, aiming its application in the moment domain of an ensemble system and developing the basis for moment ensemble noise filtering. The moment system is defined with respect to the normalized Legendre polynomials, and it is shown that its orthogonal basis structure introduces unique benefits for the application of Kalman filter for both i.i.d. and universal Gaussian disturbances. The proposed method thrives from the reduction in problem dimension, which is unbounded within the state-space representation, and can achieve significantly smaller values when converted to the truncated moment-space. Furthermore, the robustness of moment data toward outliers and localized inaccuracies is an additional positive aspect of this approach. The methodology is applied for an ensemble of harmonic oscillators and units following aircraft dynamics, with results showcasing a reduction in both cumulative absolute error and covariance with reduced calculation cost due to the realization of operations within the moment framework conceived.

1.
N.
Augier
,
U.
Boscain
, and
M.
Sigalotti
, “
Adiabatic ensemble control of a continuum of quantum systems
,”
SIAM J. Control Optim.
56
,
4045
4068
(
2018
).
2.
É.
Fodor
,
R. L.
Jack
, and
M. E.
Cates
, “
Irreversibility and biased ensembles in active matter: Insights from stochastic thermodynamics
,”
Annu. Rev. Condens. Matter Phys.
13
,
215
238
(
2022
).
3.
M. V.
Subrahmanian
,
K.
Pavuluri
,
C.
Olivieri
, and
G.
Veglia
, “
High-fidelity control of spin ensemble dynamics via artificial intelligence: From quantum computing to NMR spectroscopy and imaging
,”
PNAS Nexus
1
,
pgac133
(
2022
).
4.
Y.
Du
,
Y.
Wang
,
J.
Hu
,
X.
Li
, and
X.
Chen
, “
An emotion role mining approach based on multiview ensemble learning in social networks
,”
Inform. Fusion
88
,
100
114
(
2022
).
5.
A. T.
Becker
,
Ensemble Control of Robotic Systems
(
University of Illinois at Urbana-Champaign
,
2012
).
6.
A.
Becker
,
Y.
Ou
,
P.
Kim
,
M. J.
Kim
, and
A.
Julius
, “Feedback control of many magnetized: Tetrahymena pyriformis cells by exploiting phase inhomogeneity,” in 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems (IEEE, 2013), pp. 3317–3323.
7.
B.
Singhal
,
I. Z.
Kiss
, and
J.-S.
Li
, “
Optimal phase-selective entrainment of heterogeneous oscillator ensembles
,”
SIAM J. Appl. Dyn. Syst.
22
,
2180
2205
(
2023
).
8.
B.
Li
,
H.
Rabitz
, and
J.-P.
Wolf
, “
Optimal dynamic discrimination of similar quantum systems with time series data
,”
J. Chem. Phys.
122
,
154103
(
2005
).
9.
A. B.
Magann
,
G.
McCaul
,
H. A.
Rabitz
, and
D. I.
Bondar
, “
Sequential optical response suppression for chemical mixture characterization
,”
Quantum
6
,
626
(
2022
).
10.
J.
Oba
,
S.
Kajita
, and
A.
Soeda
, “
Fast simulation for multi-photon, atomic-ensemble quantum model of linear optical systems addressing the curse of dimensionality
,”
Sci. Rep.
14
,
3208
(
2024
).
11.
Y.-C.
Yu
,
V.
Narayanan
, and
J.-S.
Li
, “
Moment-based reinforcement learning for ensemble control
,”
IEEE Transactions on Neural Networks and Learning Systems
(published online).
12.
J.-S.
Li
,
W.
Zhang
, and
Y.-H.
Kuan
, “
Moment quantization of inhomogeneous spin ensembles
,”
Annu. Rev. Control
54
,
303–315
(
2022
).
13.
T.
Hildebrandt
and
I.
Schoenberg
, “
On linear functional operations and the moment problem for a finite interval in one or several dimensions
,”
Ann. Math.
34
,
317
328
(
1933
).
14.
P.
Jerono
,
A.
Schaum
, and
T.
Meurer
, “
Moment-based Kalman filter design for cell population balance models in batch fermentation processes
,”
IFAC-PapersOnLine
54
,
19
24
(
2021
).
15.
W.
Zhang
and
J.-S.
Li
, “
Ensemble control on lie groups
,”
SIAM J. Control Optim.
59
,
3805
3827
(
2021
).
16.
J.
Qi
,
A.
Zlotnik
, and
J.-S.
Li
, “Ensemble control of stochastic linear systems,” arXiv:1201.1857 (2012).
17.
P.
Tandeo
,
P.
Ailliot
,
M.
Bocquet
,
A.
Carrassi
,
T.
Miyoshi
,
M.
Pulido
, and
Y.
Zhen
, “
A review of innovation-based methods to jointly estimate model and observation error covariance matrices in ensemble data assimilation
,”
Mon. Weather Rev.
148
,
3973
3994
(
2020
).
18.
A. A.
Popov
,
C.
Mou
,
A.
Sandu
, and
T.
Iliescu
, “
A multifidelity ensemble Kalman filter with reduced order control variates
,”
SIAM J. Sci. Comput.
43
,
A1134
A1162
(
2021
).
19.
M.
Morzfeld
and
D.
Hodyss
, “
Gaussian approximations in filters and smoothers for data assimilation
,”
Tellus A: Dyn. Meteorol. Oceanogr.
71
,
1600344
(
2019
).
20.
H.
Akatsuka
and
M.
Terada
, “Application of Kalman filter to large-scale geospatial data: Modeling population dynamics,” in Proceedings of the 28th International Conference on Advances in Geographic Information Systems (ACM, New York, 2020), pp. 530–539.
21.
J.-S.
Li
and
N.
Khaneja
, “
Ensemble control of bloch equations
,”
IEEE Trans. Autom. Control
54
,
528
536
(
2009
).
22.
V.
Narayanan
,
W.
Zhang
, and
J.-S.
Li
, “Moment-based ensemble control,” arXiv:2009.02646 (2020).
23.
X.
Ning
,
A. L. P.
de Lima
, and
J.-S.
Li
, “NMR pulse design using moment dynamical systems,” in 2022 IEEE 61st Conference on Decision and Control (CDC) (IEEE, 2022), pp. 5167–5172.
24.
A. L. P.
de Lima
,
A. K.
Harter
,
M. J.
Martin
, and
A.
Zlotnik
, “Optimal ensemble control of matter-wave splitting in Bose–Einstein condensates,” arXiv:2309.08807 (2023).
25.
A.
Stuart
and
K.
Zygalakis
, “Data assimilation: A mathematical introduction,” Technical Report [Oak Ridge National Laboratory (ORNL), Oak Ridge, TN, 2015].
26.
P.-Y.
Tsai
and
F.
Palazzetti
, “
Orientation of chiral molecules by external electric fields: Focus on photodissociation dynamics
,”
Symmetry
14
,
2152
(
2022
).
27.
B.
Millidge
,
A.
Tschantz
,
A.
Seth
, and
C.
Buckley
, “Neural Kalman filtering,” arXiv:2102.10021 (2021).
28.
A.
Yousefi
,
A. K.
Gillespie
,
J. A.
Guidera
,
M.
Karlsson
,
L. M.
Frank
, and
U. T.
Eden
, “
Efficient decoding of multi-dimensional signals from population spiking activity using a Gaussian mixture particle filter
,”
IEEE Trans. Biomed. Eng.
66
,
3486
3498
(
2019
).
29.
R.
Vỳbornỳ
, “
The Weierstrass theorem on polynomial approximation
,”
Math. Bohem.
130
,
161
166
(
2005
).
30.
G. B.
Folland
,
Real Analysis: Modern Techniques and Their Applications
(
John Wiley & Sons
,
1999
), Vol. 40.
31.
R.
Askey
,
I.
Schoenberg
, and
A.
Sharma
, “
Hausdorff’s moment problem and expansions in Legendre polynomials
,”
J. Math. Anal. Appl.
86
,
237
245
(
1982
).
32.
L.
Pogorelyuk
,
C. W.
Rowley
, and
N. J.
Kasdin
, “
An efficient approximation of the Kalman filter for multiple systems coupled via low-dimensional stochastic input
,”
Automatica
117
,
108972
(
2020
).
33.
Q.
Zhang
and
L.
Zhang
, “
Boundedness of the Kalman filter revisited
,”
IFAC-PapersOnLine
54
,
334
338
(
2021
).
34.
M.
Vu
and
S.
Zeng
, “Iterative optimal control syntheses for nonlinear systems in constrained environments,” in 2020 American Control Conference (ACC) (IEEE, 2020), pp. 1731–1736.
35.
J.
Qi
and
J.-S.
Li
, “Ensemble controllability of time-invariant linear systems,” in 52nd IEEE Conference on Decision and Control (IEEE, 2013), pp. 2709–2714.
36.
E.
Lavretsky
and
K. A.
Wise
, “Robust adaptive control,” in Robust and Adaptive Control: With Aerospace Applications (Springer, 2012), pp. 317–353.
37.
X.
Ning
,
G.
Cheng
,
W.
Zhang
, and
J.-S.
Li
, “Legendre-moment transform for linear ensemble control and computation,” arXiv:2401.01770 (2024).
38.
S.
Zeng
and
J.-S.
Li
, “
An operator theoretic approach to linear ensemble control
,”
Syst. Control Lett.
168
,
105350
(
2022
).
39.
J.-S.
Li
, “
Ensemble control of finite-dimensional time-varying linear systems
,”
IEEE Trans. Autom. Control
56
,
345
357
(
2010
).
You do not currently have access to this content.