The properties of complex networked systems arise from the interplay between the dynamics of their elements and the underlying topology. Thus, to understand their behavior, it is crucial to convene as much information as possible about their topological organization. However, in large systems, such as neuronal networks, the reconstruction of such topology is usually carried out from the information encoded in the dynamics on the network, such as spike train time series, and by measuring the transfer entropy between system elements. The topological information recovered by these methods does not necessarily capture the connectivity layout, but rather the causal flow of information between elements. New theoretical frameworks, such as Integrated Information Decomposition ( Φ-ID), allow one to explore the modes in which information can flow between parts of a system, opening a rich landscape of interactions between network topology, dynamics, and information. Here, we apply Φ-ID on in silico and in vitro data to decompose the usual transfer entropy measure into different modes of information transfer, namely, synergistic, redundant, or unique. We demonstrate that the unique information transfer is the most relevant measure to uncover structural topological details from network activity data, while redundant information only introduces residual information for this application. Although the retrieved network connectivity is still functional, it captures more details of the underlying structural topology by avoiding to take into account emergent high-order interactions and information redundancy between elements, which are important for the functional behavior, but mask the detection of direct simple interactions between elements constituted by the structural network topology.

1.
D. D.
Ghosh
,
M. N.
Nitabach
,
Y.
Zhang
, and
G.
Harris
, “
Multisensory integration in C. elegans
,”
Curr. Opin. Neurobiol.
43
,
110
118
(
2017
).
2.
E.
Bertin
,
Statistical Physics of Complex Systems
(
Springer International Publishing
,
2021
).
3.
J. T.
Lizier
,
The Local Information Dynamics of Distributed Computation in Complex Systems
(Springer Berlin Heidelberg,
2013
).
4.
A. B.
Barrett
, “
Exploration of synergistic and redundant information sharing in static and dynamical Gaussian systems
,”
Phys. Rev. E
91
,
052802
(
2015
).
5.
P. A. M.
Mediano
,
F. E.
Rosas
,
A. I.
Luppi
,
R. L.
Carhart-Harris
,
D.
Bor
,
A. K.
Seth
, and
A. B.
Barrett
, “Towards an extended taxonomy of information dynamics via integrated information decomposition,” arXiv:2109.13186 (2021).
6.
P. A. M.
Mediano
,
F. E.
Rosas
,
J. C.
Farah
,
M.
Shanahan
,
D.
Bor
, and
A. B.
Barrett
, “
Integrated information as a common signature of dynamical and information-processing complexity
,”
Chaos
32
,
013115
(
2022
).
7.
A. I.
Luppi
,
P. A. M.
Mediano
,
F. E.
Rosas
,
N.
Holland
,
T. D.
Fryer
,
J. T.
O’Brien
,
J. B.
Rowe
,
D. K.
Menon
,
D.
Bor
, and
E. A.
Stamatakis
, “
A synergistic core for human brain evolution and cognition
,”
Nat. Neurosci.
25
,
771
782
(
2022
).
8.
T. F.
Varley
, “
Decomposing past and future: Integrated information decomposition based on shared probability mass exclusions
,”
PLoS One
18
,
e0282950
(
2023
).
9.
A. K.
Seth
,
A. B.
Barrett
, and
L.
Barnett
, “
Causal density and integrated information as measures of conscious level
,”
Philos. Trans. R. Soc. A: Math., Phys. Eng. Sci.
369
,
3748
3767
(
2011
).
10.
O.
Stetter
,
D.
Battaglia
,
J.
Soriano
, and
T.
Geisel
, “
Model-free reconstruction of excitatory neuronal connectivity from calcium imaging signals
,”
PLoS Comput. Biol.
8
(8),
e1002653
(
2012
).
11.
J.
Soriano
, “
Neuronal cultures: Exploring biophysics, complex systems, and medicine in a dish
,”
Biophysica
3
,
181
202
(
2023
).
12.
M.
Montalà-Flaquer
,
C. F.
López-León
,
D.
Tornero
,
A. M.
Houben
,
T.
Fardet
,
P.
Monceau
,
S.
Bottani
, and
J.
Soriano
, “
Rich dynamics and functional organization on topographically designed neuronal networks in vitro
,”
iScience
25
,
105680
(
2022
).
13.
J.
Pearl
and
D.
Mackenzie
,
The Book of Why: The New Science of Cause and Effect
(
Basic Books
,
2018
).
14.
A. A.
Ludl
and
J.
Soriano
, “
Impact of physical obstacles on the structural and effective connectivity of in silico neuronal circuits
,”
Front. Comput. Neurosci.
14
,
77
(
2020
).
15.
G.
Carola
,
D.
Malagarriga
,
C.
Calatayud
,
M.
Pons-Espinal
,
L.
Blasco-Agell
,
Y.
Richaud-Patin
,
I.
Fernandez-Carasa
,
V.
Baruffi
,
S.
Beltramone
,
E.
Molina
,
P.
Dell’Era
,
J. J.
Toledo-Aral
,
E.
Tolosa
,
A. R.
Muotri
,
J.
Garcia Ojalvo
,
J.
Soriano
,
A.
Raya
, and
A.
Consiglio
, “
Parkinson’s disease patient-specific neuronal networks carrying the LRRK2 G2019S mutation unveil early functional alterations that predate neurodegeneration
,”
npj Parkinson’s Dis.
7
,
55
(
2021
).
16.
A.
Hagberg
,
P.
Swart
, and
D. S.
Chult
, “Exploring network structure, dynamics, and function using networkx,” Technical Report, Los Alamos National Laboratory (LANL), Los Alamos, NM, 2008.
17.
F. E.
Rosas
,
P. A.
Mediano
,
H. J.
Jensen
,
A. K.
Seth
,
A. B.
Barrett
,
R. L.
Carhart-Harris
, and
D.
Bor
, “
Reconciling emergences: An information-theoretic approach to identify causal emergence in multivariate data
,”
PLoS Comput. Biol.
16
,
e1008289
(
2020
).
18.
J. D.
Medaglia
,
M.-E.
Lynall
, and
D. S.
Bassett
, “
Cognitive network neuroscience
,”
J. Cogn. Neurosci.
27
,
1471
1491
(
2015
).
19.
D. S.
Bassett
,
P.
Zurn
, and
J. I.
Gold
, “
On the nature and use of models in network neuroscience
,”
Nat. Rev. Neurosci.
19
,
566
578
(
2018
).
20.
I.
Magrans de Abril
,
J.
Yoshimoto
, and
K.
Doya
, “
Connectivity inference from neural recording data: Challenges, mathematical bases and research directions
,”
Neural Netw.
102
,
120
137
(
2018
).
21.
A.
Banerjee
,
S.
Chandra
, and
E.
Ott
, “
Network inference from short, noisy, low time-resolution, partial measurements: Application to C. elegans neuronal calcium dynamics
,”
Proc. Natl. Acad. Sci. U.S.A.
120
,
e2216030120
(
2023
).
22.
J. G.
Orlandi
,
O.
Stetter
,
J.
Soriano
,
T.
Geisel
, and
D.
Battaglia
, “
Transfer entropy reconstruction and labeling of neuronal connections from simulated calcium imaging
,”
PLoS One
9
,
e98842
(
2014
).
23.
A.
Kolchinsky
, “
A novel approach to the partial information decomposition
,”
Entropy
24
,
403
(
2022
).
24.
A.
Kraskov
,
H.
Stögbauer
, and
P.
Grassberger
, “
Estimating mutual information
,”
Phys. Rev. E
69
,
066138
(
2004
).
25.
W.
Xiong
,
L.
Faes
, and
P. C.
Ivanov
, “
Entropy measures, entropy estimators, and their performance in quantifying complex dynamics: Effects of artifacts, nonstationarity, and long-range correlations
,”
Phys. Rev. E
95
,
062114
(
2017
).
26.
J. G.
Orlandi
,
S.
Fernández-García
,
A.
Comella-Bolla
,
M.
Masana
,
G. G.-D.
Barriga
,
M.
Yaghoubi
,
A.
Kipp
,
J. M.
Canals
,
M. A.
Colicos
,
J.
Davidsen
, and
J.
Alberch
, “NETCAL: An interactive platform for large-scale, network and population dynamics analysis of calcium imaging recordings,” version 7.0.0 Open Beta; see Zenodo: https://zenodo.org/records/1119026 (2017).
27.
J. G.
Orlandi
,
J.
Soriano
,
E.
Alvarez-Lacalle
,
S.
Teller
, and
J.
Casademunt
, “
Noise focusing and the emergence of coherent activity in neuronal cultures
,”
Nat. Phys.
9
,
582
590
(
2013
).
28.
E. M.
Izhikevich
, “
Simple model of spiking neurons
,”
IEEE Trans. Neural Netw.
14
,
1569
1572
(
2003
).
29.
M.
Rubinov
and
O.
Sporns
, “
Complex network measures of brain connectivity: Uses and interpretations
,”
NeuroImage
52
,
1059
1069
(
2010
).
30.
V. D.
Blondel
,
J.-L.
Guillaume
,
R.
Lambiotte
, and
E.
Lefebvre
, “
Fast unfolding of communities in large networks
,”
J. Stat. Mech.: Theory Exp.
2008
,
P10008
.
31.
I.
Diez
,
P.
Bonifazi
,
I.
Escudero
,
B.
Mateos
,
M. A.
Muñoz
,
S.
Stramaglia
, and
J. M.
Cortes
, “
A novel brain partition highlights the modular skeleton shared by structure and function
,”
Sci. Rep.
5
,
10532
(
2015
).
32.
M.
MacMahon
and
D.
Garlaschelli
, “
Community detection for correlation matrices
,”
Phys. Rev. X
5
,
021006
(
2015
).
33.
M. E. J.
Newman
, “
Equivalence between modularity optimization and maximum likelihood methods for community detection
,”
Phys. Rev. E
94
,
052315
(
2016
).
You do not currently have access to this content.