Floods significantly impact the well-being and development of communities. Hence, understanding their causes and establishing methodologies for risk prevention is a critical challenge for effective warning systems. Complex systems such as hydrological basins are modeled through hydrological models that have been utilized to understand water recharge of aquifers, available volume of dams, and floods in diverse regions. Acquiring real-time hydrometeorological data from basins and rivers is vital for establishing data-driven-based models as tools for the prediction of river-level dynamics and for understanding its nonlinear behavior. This paper introduces a hydrological model based on a multilayer perceptron neural network as a useful tool for time series modeling and forecasting river levels in three stations of the Rio Negro basin in Uruguay. Daily time series of river levels and rainfall serve as the input data for the model. The assessment of the models is based on metrics such as the Nash–Sutcliffe coefficient, the root mean square error, percent bias, and volumetric efficiency. The outputs exhibit varying model performance and accuracy during the prediction period across different sub-basin scales, revealing the neural network’s ability to learn river dynamics. Lagged time series analysis demonstrates the potential for chaos in river-level time series over extended time periods, mainly when predicting dam-related scenarios, which shows physical connections between the dynamical system and the data-based model such as the evolution of the system over time.

1.
T.
Kokkonen
,
H.
Koivusalo
, and
T.
Karvonen
, “
A semi-distributed approach to rainfall-runoff modelling—A case study in a snow affected catchment
,”
Environ. Model. Software
16
(
5
),
481
493
(
2001
).
2.
B.
Tellman
,
J. A.
Sullivan
, and
C.
Kuhn
, “
Satellite imaging reveals increased proportion of population exposed to floods
,”
Nature
596
,
80
86
(
2021
).
3.
S. E.
Crawford
, “
Remobilization of pollutants during extreme flood events poses severe risks to human and environmental health
,”
J. Hazard. Mater.
421
,
126691
(
2022
).
4.
C. W.
Dawson
and
R. L.
Wilby
, “
Hydrological modelling using artificial neural networks
,”
Prog. Phys. Geogr.
25
,
80
108
(
2001
).
5.
A.
Jhones
,
V.
Marcelo
,
J.
Rubens
,
O.
Vinicius
, and
M.
Carlos
, “
Evaluation of satellite precipitation products for hydrological modeling in the Brazilian cerrado biome
,”
Water
12
(9),
2571
(
2020
).
6.
B.
Sivakumar
,
A.
Jayawardena
, and
T.
Fernando
, “
River flow forecasting: Use of phase-space reconstruction and artificial neural networks approaches
,”
J. Hydrol.
265
,
225
245
(
2002
).
7.
N.
Yasmin
and
B.
Sivakumar
, “
Temporal streamflow analysis: Coupling nonlinear dynamics with complex networks
,”
J. Hydrol.
564
,
59
67
(
2018
).
8.
L.
Li
and
K. S.
Jun
, “
A hybrid approach to improve flood forecasting by combining a hydrodynamic flow model and artificial neural networks
,”
Water
14
,
1393
(
2022
).
9.
Z.
Guo
,
J. P.
Leitão
,
N. E.
Simões
, and
V.
Moosavi
, “
Data-driven flood emulation: Speeding up urban flood predictions by deep convolutional neural networks
,”
J. Flood Risk Manage.
14
,
e12684
(
2021
).
10.
F.
Kratzert
,
D.
Klotz
,
G.
Shalev
,
G.
Klambauer
,
S.
Hochreiter
, and
G.
Nearing
, “
Towards learning universal, regional, and local hydrological behaviors via machine learning applied to large-sample datasets
,”
Hydrol. Earth Syst. Sci.
23
,
5089
5110
(
2019
).
11.
R. C.
Sidle
, “
Strategies for smarter catchment hydrology models: Incorporating scaling and better process representation
,”
Geosci. Lett.
8
,
24
(
2021
).
12.
A. D.
Vera
and
R.
Terra
, “
Combining cmorph and rain gauges observations over the Rio Negro basin
,”
J. Hydrometeorol.
13
,
1799
1809
(
2012
).
13.
A.
De Vera
,
P.
Alfaro
, and
R.
Terra
, “
Operational implementation of satellite-rain gauge data merging for hydrological modeling
,”
Water
13
,
533
(
2021
).
14.
M.
Sadres
, “Desarrollo de un modelo en la cuenca alta del río negro (Uruguay) utilizando hydrobid: Análisis de la disponibilidad de agua en diferentes escenarios,” tesis de maestría (Universidad de Alcalí, 2019).
15.
See https://www.ambiente.gub.uy/oan/iniciativa-para-el-rio-negro/ for detailed information and characteristics of the Rio Negro Uruguay basin.
16.
F. B.
Hamzah
,
F. M.
Hamzah
,
S. F. M.
Razali
,
O.
Jaafar
, and
N. A.
Jamil
, “
Imputation methods for recovering streamflow observation: A methodological review
,”
Cogent Environ. Sci.
6
,
1745133
(
2020
).
17.
T.
Khampuengson
and
W.
Wang
, “
Novel methods for imputing missing values in water level monitoring data
,”
Water Resour. Manag.
37
,
851
878
(
2023
).
18.
H. M. L.
Chaves
,
C. C.
da Silva
, and
M. R. S.
Fonseca
, “
Reservoir reliability as affected by climate change and strategies for adaptation
,”
Water
15
,
2323
(
2023
).
19.
H. D.
Kilinc
, “
Streamflow forecasting based on the hybrid particle swarm optimization and long short-term memory model in the orontes basin
,”
Water
14
,
490
(
2022
).
20.
B.
Mohammadi
,
M. J. S.
Safari
, and
S.
Vazifehkhah
, “
IHACRES, GR4J and MISD-based multi conceptual-machine learning approach for rainfall-runoff modeling
,”
Sci. Rep.
12
,
12096
(
2022
).
21.
D.
Feng
,
Z.
Tan
, and
Q. Z.
He
, “
Physics-informed neural networks of the Saint-Venant equations for downscaling a large-scale river model
,”
Water Resour. Res.
59
,
e2022WR033168
, https://doi.org/10.1029/2022WR033168 (
2023
).
22.
G. K.
Devia
,
B.
Ganasri
, and
G.
Dwarakish
, “
A review on hydrological models
,”
Aquat. Procedia
4
,
1001
1007
(
2015
).
23.
F. M.
Fernando
,
P. M.
Paulo
,
C. D. P.
Rodrigo
, and
C.
Walter
, “Avaliação de um método de propagação de cheias em rios com aproximação inercial das equações de Saint-Venant,”
Rev. Bras. Recur. Hidricos
19
,
137
(
2014
).
24.
A.
de Lavenne
,
T.
Loree
,
H.
Squividant
, and
C.
Cudennec
, “
The transfr toolbox for transferring observed streamflow series to ungauged basins based on their hydrogeomorphology
,”
Environ. Model. Software
159
,
105562
(
2023
).
25.
W.
Collischonn
,
D.
Allasia
,
B. C. D.
Silva
, and
C. E. M.
Tucci
, “
The MGB-IPH model for large-scale rainfall–runoff modelling
,”
Hydrol. Sci. J.
52
,
878
895
(
2007
).
26.
J.
Boussinesq
, “Théorie des ondes et des remous qui se propagent le long d’un canal rectangulaire horizontal, en communiquant au liquide contenu dans ce canal des vitesses sensiblement pareilles de la surface au fond,”
J. Math. Pures Appl.
17
,
55
108
(
1872
), http://www.numdam.org/item/JMPA_1872_2_17__55_0/.
27.
B. R.
Hodges
, “Conservative finite-volume forms of the Saint-Venant equations for hydrology and urban drainage,”
Hydrol. Earth Syst. Sci.
23
,
1281–1304
(
2019
).
28.
E.
Rodríguez
,
M.
Durand
, and
R. P. de Moraes
Frasson
, “
Observing rivers with varying spatial scales
,”
Water Resour. Res.
56
,
e2019WR026476
(
2020
).
29.
B. R.
Hodges
, “
Conservative finite-volume forms of the Saint-Venant equations for hydrology and urban drainage
,”
Hydrol. Earth Syst. Sci.
23
,
1281
1304
(
2019
).
30.
M. Y. A.
Kader
,
R.
Badé
, and
B.
Saley
, “Study of the 1D Saint-Venant equations and application to the simulation of a flood problem,”
J. Appl. Math. Phys.
8
,
1193–1206
(
2020
).
31.
A.
Berdyshev
,
R.
Aloev
,
D.
Bliyeva
,
S.
Dadabayev
, and
Z.
Baishemirov
, “
Stability analysis of an upwind difference splitting scheme for two-dimensional Saint-Venant equations
,”
Symmetry
14
,
1986
(
2022
).
32.
L. B. L.
Santos
,
C. P.
Freitas
,
L.
Bacelar
,
J. A. J. P.
Soares
,
M. M.
Diniz
,
G. R. T.
Lima
, and
S.
Stephany
, “A neural network-based hydrological model for very high-resolution forecasting using weather radar data,”
Eng
4
,
1787–1796
(
2023
).
33.
See https://neptune.ai/homepage for details of the evaluation of data-driven model experiments.
34.
Z.
Liu
,
Y.
Wang
,
Z.
Xu
, and
Q.
Duan
,
Conceptual Hydrological. Handbook of Hydrometeorological Ensemble Forecasting
(
Springer
,
Berlin
,
2017
), Vols. 1–23.
35.
E. K.
Jackson
,
W.
Roberts
,
B.
Nelsen
,
G. P.
Williams
,
E. J.
Nelson
, and
D. P.
Ames
, “
Introductory overview: Error metrics for hydrologic modelling – A review of common practices and an open source library to facilitate use and adoption
,”
Environ. Model. Software
119
,
32
48
(
2019
).
36.
S.
Huang
,
R.
Kumar
,
M.
Flörke
,
T.
Yang
,
Y.
Hundecha
,
P.
Kraft
,
C.
Gao
,
A.
Gelfan
,
S.
Liersch
,
A.
Lobanova
,
M.
Strauch
,
F. V.
Ogtrop
,
J.
Reinhardt
,
U.
Haberlandt
, and
V.
Krysanova
, “
Evaluation of an ensemble of regional hydrological models in 12 large-scale river basins worldwide
,”
Clim. Change
141
,
381
397
(
2016
).
37.
H.
Salis
,
A.
da Costa
,
J.
Vianna
,
A.
Schuler
,
A.
Künne
,
L.
Fernandes
, and
F.
Pacheco
, “
Hydrologic modeling for sustainable water resources management in urbanized karst areas
,”
Int. J. Environ. Res. Public Health
16
,
2542
(
2019
).
38.
V. P.
Singh
and
B.
Sivakumar
, “
Forecasting monthly streamflow dynamics in the western United States: A nonlinear dynamical approach
,”
Environ. Model. Software
18
,
721
728
(
2003
).
39.
Y.
Jiang
,
X.
Bao
,
S.
Hao
,
H.
Zhao
,
H.
Zhao
,
X.
Li
, and
X.
Wu
, “
Monthly streamflow forecasting using ELM-IPSO based on phase space reconstruction
,”
Water Resour. Manag.
34
,
3515
3531
(
2020
).
40.
T.
Sauer
, “
Interspike interval embedding of chaotic signals
,”
Chaos
5
,
127
132
(
1995
).
41.
R.
Hegger
and
H.
Kantz
, “
Embedding of sequences of time intervals
,”
Europhys. Lett.
38
,
267
(
1997
).
42.
T.
Sauer
,
J. A.
Yorke
, and
M.
Casdagli
, “
Embedology
,”
J. Stat. Phys.
65
,
579
616
(
1991
).
43.
S.
Strogatz
,
Non-Linear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry, and Engineering
(
CRC Press
,
2015
).
44.
M. T.
Rosenstein
,
J. J.
Collins
, and
C. J.
De Luca
, “
A practical method for calculating largest Lyapunov exponents from small data sets
,”
Physica D
65
,
117
134
(
1993
).
45.
D.
Labat
,
B.
Sivakumar
, and
A.
Mangin
, “
Evidence for deterministic chaos in long-term high-resolution karstic streamflow time series
,”
Stochastic Environ. Res. Risk Assess.
30
,
2189
2196
(
2015
).
46.
L. Z. R.
Rolim
and
F. D. A. D. S.
Filho
, “Exploring spatiotemporal chaos in hydrological data: Evidence from Cearó, Brazil,”
Stoch. Environ. Res. Risk Assess.
37
,
4513–4537
(
2023
).
47.
A. V. T.
Momplet
,
Informe de Calibración del Modelo Hidrológico de Cantidad de Agua Para la Cuenca del Río Yí
(
Ministerio de Ambiente
,
2022
).
You do not currently have access to this content.