Pair-annihilation events are ubiquitous in a variety of spatially extended systems and are often studied using computationally expensive simulations. Here, we develop an approach in which we simulate the pair-annihilation of spiral wave tips in cardiac models using a computationally efficient particle model. Spiral wave tips are represented as particles with dynamics governed by diffusive behavior and short-ranged attraction. The parameters for diffusion and attraction are obtained by comparing particle motion to the trajectories of spiral wave tips in cardiac models during spiral defect chaos. The particle model reproduces the annihilation rates of the cardiac models and can determine the statistics of spiral wave dynamics, including its mean termination time. We show that increasing the attraction coefficient sharply decreases the mean termination time, making it a possible target for pharmaceutical intervention.

1.
A.
Doostmohammadi
,
J.
Ignés-Mullol
,
J. M.
Yeomans
, and
F.
Sagués
, “
Active nematics
,”
Nat. Commun.
9
,
3246
(
2018
).
2.
C.
Liu
,
J.
Shen
, and
X.
Yang
, “
Dynamics of defect motion in nematic liquid crystal flow: Modeling and numerical simulation
,”
Commun. Comput. Phys.
2
,
1184
1198
(
2007
).
3.
D.
Boyer
,
W.
Mather
,
O.
Mondragón-Palomino
,
S.
Orozco-Fuentes
,
T.
Danino
,
J.
Hasty
, and
L. S.
Tsimring
, “
Buckling instability in ordered bacterial colonies
,”
Phys. Biol.
8
,
026008
(
2011
).
4.
K.
Copenhagen
,
R.
Alert
,
N. S.
Wingreen
, and
J. W.
Shaevitz
, “
Topological defects promote layer formation in Myxococcus xanthus colonies
,”
Nat. Phys.
17
,
211
215
(
2021
).
5.
P.
Coullet
,
L.
Gil
, and
J.
Lega
, “
Defect-mediated turbulence
,”
Phys. Rev. Lett.
62
,
1619
(
1989
).
6.
I.
Rehberg
,
S.
Rasenat
, and
V.
Steinberg
, “
Traveling waves and defect-initiated turbulence in electroconvecting nematics
,”
Phys. Rev. Lett.
62
,
756
(
1989
).
7.
R. E.
Ecke
,
Y.
Hu
,
R.
Mainieri
, and
G.
Ahlers
, “
Excitation of spirals and chiral symmetry breaking in Rayleigh-Bénard convection
,”
Science
269
,
1704
1707
(
1995
).
8.
M.
Hildebrand
,
M.
Bär
, and
M.
Eiswirth
, “
Statistics of topological defects and spatiotemporal chaos in a reaction-diffusion system
,”
Phys. Rev. Lett.
75
,
1503
(
1995
).
9.
Q.
Ouyang
and
J.-M.
Flesselles
, “
Transition from spirals to defect turbulence driven by a convective instability
,”
Nature
379
,
143
(
1996
).
10.
D. A.
Egolf
,
I. V.
Melnikov
,
W.
Pesch
, and
R. E.
Ecke
, “
Mechanisms of extensive spatiotemporal chaos in Rayleigh–Bénard convection
,”
Nature
404
,
733
736
(
2000
).
11.
K. E.
Daniels
and
E.
Bodenschatz
, “
Defect turbulence in inclined layer convection
,”
Phys. Rev. Lett.
88
,
034501
(
2002
).
12.
H.
Varela
,
C.
Beta
,
A.
Bonnefont
, and
K.
Krischer
, “
Transitions to electrochemical turbulence
,”
Phys. Rev. Lett.
94
,
174104
(
2005
).
13.
C.
Beta
,
A. S.
Mikhailov
,
H. H.
Rotermund
, and
G.
Ertl
, “
Defect-mediated turbulence in a catalytic surface reaction
,”
Europhys. Lett.
75
,
868
(
2006
).
14.
Z.
Qu
, “
Critical mass hypothesis revisited: Role of dynamical wave stability in spontaneous termination of cardiac fibrillation
,”
Am. J. Physiol. Heart Circ. Physiol.
290
,
H255
H263
(
2006
).
15.
T.
Höfer
,
J. A.
Sherratt
, and
P. K.
Maini
, “
Dictyostelium discoideum: Cellular self-organization in an excitable biological medium
,”
Proc. R. Soc. Lond., Ser. B
259
,
249
257
(
1995
).
16.
I. R.
Epstein
and
K.
Showalter
, “
Nonlinear chemical dynamics: Oscillations, patterns, and chaos
,”
J. Phys. Chem.
100
,
13132
13147
(
1996
).
17.
A.
Karma
, “
Electrical alternans and spiral wave breakup in cardiac tissue
,”
Chaos
4
,
461
472
(
1994
).
18.
K.
Ten Tusscher
,
D.
Noble
,
P.
Noble
, and
A.
Panfilov
, “
A model for human ventricular tissue
,”
Am. J. Physiol. Heart Circ. Physiol.
286
,
H1573
H1589
(
2004
).
19.
R.
Clayton
,
O.
Bernus
,
E.
Cherry
,
H.
Dierckx
,
F. H.
Fenton
,
L.
Mirabella
,
A. V.
Panfilov
,
F. B.
Sachse
,
G.
Seemann
, and
H.
Zhang
, “
Models of cardiac tissue electrophysiology: Progress, challenges and open questions
,”
Prog. Biophys. Mol. Biol.
104
,
22
48
(
2011
).
20.
W.-J.
Rappel
, “
The physics of heart rhythm disorders
,”
Phys. Rep.
978
,
1
45
(
2022
).
21.
T.
Lilienkamp
and
U.
Parlitz
, “
Terminal transient phase of chaotic transients
,”
Phys. Rev. Lett.
120
,
094101
(
2018
).
22.
D.
Vidmar
and
W.-J.
Rappel
, “
Extinction dynamics of spiral defect chaos
,”
Phys. Rev. E
99
,
012407
(
2019
).
23.
T.
Lilienkamp
and
U.
Parlitz
, “
Terminating transient chaos in spatially extended systems
,”
Chaos
30
,
051108
(
2020
).
24.
J.
Jalife
, “
Ventricular fibrillation: Mechanisms of initiation and maintenance
,”
Annu. Rev. Physiol.
62
,
25
50
(
2000
).
25.
G. V.
Naccarelli
,
H.
Varker
,
J.
Lin
, and
K. L.
Schulman
, “
Increasing prevalence of atrial fibrillation and flutter in the United States
,”
Am. J. Cardiol.
104
,
1534
1539
(
2009
).
26.
Y.
Miyasaka
,
M. E.
Barnes
,
K. R.
Bailey
,
S. S.
Cha
,
B. J.
Gersh
,
J. B.
Seward
, and
T. S.
Tsang
, “
Mortality trends in patients diagnosed with first atrial fibrillation: A 21-year community-based study
,”
J. Am. Coll. Cardiol.
49
,
986
992
(
2007
).
27.
S. S.
Chugh
,
R.
Havmoeller
,
K.
Narayanan
,
D.
Singh
,
M.
Rienstra
,
E. J.
Benjamin
,
R. F.
Gillum
,
Y.-H.
Kim
,
J. H.
McAnulty
, Jr.
,
Z.-J.
Zheng
et al., “
Worldwide epidemiology of atrial fibrillation: A global burden of disease 2010 study
,”
Circulation
129
,
837
847
(
2014
).
28.
D. A.
Lane
,
F.
Skjøth
,
G. Y.
Lip
,
T. B.
Larsen
, and
D.
Kotecha
, “
Temporal trends in incidence, prevalence, and mortality of atrial fibrillation in primary care
,”
J. Am. Heart Assoc.
6
,
e005155
(
2017
).
29.
L.
Gil
,
J.
Lega
, and
J.
Meunier
, “
Statistical properties of defect-mediated turbulence
,”
Phys. Rev. A
41
,
1138
(
1990
).
30.
W.-J.
Rappel
,
D. E.
Krummen
,
T.
Baykaner
,
J.
Zaman
,
A.
Donsky
,
V.
Swarup
,
J. M.
Miller
, and
S. M.
Narayan
, “
Stochastic termination of spiral wave dynamics in cardiac tissue
,”
Front. Netw. Physiol.
2
,
2
(
2022
).
31.
D.
Dharmaprani
,
M.
Schopp
,
P.
Kuklik
,
D.
Chapman
,
A.
Lahiri
,
L.
Dykes
,
F.
Xiong
,
M.
Aguilar
,
B.
Strauss
,
L.
Mitchell
et al., “
Renewal theory as a universal quantitative framework to characterize phase singularity regeneration in mammalian cardiac fibrillation
,”
Circ.: Arrhythm. Electrophysiol.
12
,
e007569
(
2019
).
32.
F.
Fenton
and
A.
Karma
, “
Vortex dynamics in three-dimensional continuous myocardium with fiber rotation: Filament instability and fibrillation
,”
Chaos
8
,
20
47
(
1998
).
33.
C. H.
Luo
and
Y.
Rudy
, “
A model of the ventricular cardiac action potential. Depolarization, repolarization, and their interaction
,”
Circ. Res.
68
,
1501
1526
(
1991
).
34.
T.
Lewiner
,
H.
Lopes
,
A. W.
Vieira
, and
G.
Tavares
, “
Efficient implementation of marching cubes’ cases with topological guarantees
,”
J. Graph. Tools
8
,
1
15
(
2003
).
35.
E.
Ermakova
,
A.
Pertsov
, and
E.
Shnol
, “
On the interaction of vortices in two-dimensional active media
,”
Phys. D
40
,
185
195
(
1989
).
36.
H.
Kalita
and
S.
Dutta
, “
Interaction of multiple spiral rotors in a reaction-diffusion system
,”
Phys. Rev. E
105
,
054213
(
2022
).
37.
M.
Dykman
,
E.
Mori
,
J.
Ross
, and
P.
Hunt
, “
Large fluctuations and optimal paths in chemical kinetics
,”
J. Chem. Phys.
100
,
5735
5750
(
1994
).
38.
M.
Assaf
and
B.
Meerson
, “
Extinction of metastable stochastic populations
,”
Phys. Rev. E
81
,
021116
(
2010
).
39.
H.
Qian
,
M. P.
Sheetz
, and
E. L.
Elson
, “
Single particle tracking. Analysis of diffusion and flow in two-dimensional systems
,”
Biophys. J.
60
,
910
921
(
1991
).
40.
D. M.
Lombardo
and
W.-J.
Rappel
, “
Chaotic tip trajectories of a single spiral wave in the presence of heterogeneities
,”
Phys. Rev. E
99
,
062409
(
2019
).
41.
V.
Biktashev
and
A.
Holden
, “
Deterministic Brownian motion in the hypermeander of spiral waves
,”
Physica D
116
,
342
354
(
1998
).
42.
M.
Newman
,
Networks; An Introduction
(
Oxford University
,
Oxford
,
2010
).
43.
C.
Gardiner
,
Handbook of Stochastic Methods
(
Springer
,
Berlin
,
2004
), Vol. 3, p.
260
.
44.
I.
Biktasheva
and
V.
Biktashev
, “
Wave-particle dualism of spiral waves dynamics
,”
Phys. Rev. E
67
,
026221
(
2003
).
45.
I.
Biktasheva
,
D.
Barkley
,
V.
Biktashev
, and
A.
Foulkes
, “
Computation of the drift velocity of spiral waves using response functions
,”
Phys. Rev. E
81
,
066202
(
2010
).
46.
C. D.
Marcotte
and
R. O.
Grigoriev
, “
Adjoint eigenfunctions of temporally recurrent single-spiral solutions in a simple model of atrial fibrillation
,”
Chaos
26
,
093107
(
2016
).
47.
H.
Dierckx
,
H.
Verschelde
, and
A. V.
Panfilov
, “
Measurement and structure of spiral wave response functions
,”
Chaos
27
,
093912
(
2017
).
48.
H.
Dierckx
,
A. V.
Panfilov
,
H.
Verschelde
,
V. N.
Biktashev
, and
I. V.
Biktasheva
, “
Response function framework for the dynamics of meandering or large-core spiral waves and modulated traveling waves
,”
Phys. Rev. E
99
,
022217
(
2019
).
49.
R.
Pordes
,
D.
Petravick
,
B.
Kramer
,
D.
Olson
,
M.
Livny
,
A.
Roy
,
P.
Avery
,
K.
Blackburn
,
T.
Wenaus
,
F.
Würthwein
,
I.
Foster
,
R.
Gardner
,
M.
Wilde
,
A.
Blatecky
,
J.
McGee
, and
R.
Quick
, “The open science grid,”
J. Phys. Conf. Ser.
78, 012057 (2007).
50.
I.
Sfiligoi
,
D. C.
Bradley
,
B.
Holzman
,
P.
Mhashilkar
,
S.
Padhi
, and
F.
Würthwein
, “The pilot way to grid resources using glideinWMS,” in 2009 WRI World Congress on Computer Science and Information Engineering (IEEE, 2009), Vol. 2, pp. 428–432.
51.
F.
Fenton
and
A.
Karma
, “
Vortex dynamics in three-dimensional continuous myocardium with fiber rotation: Filament instability and fibrillation
,”
Chaos
8
,
20
47
(
1998
).
52.
C.-H.
Luo
and
Y.
Rudy
, “
A model of the ventricular cardiac action potential. Depolarization, repolarization, and their interaction
,”
Circ. Res.
68
,
1501
1526
(
1991
).
53.
Z.
Qu
,
J. N.
Weiss
, and
A.
Garfinkel
, “
From local to global spatiotemporal chaos in a cardiac tissue model
,”
Phys. Rev. E
61
,
727
(
2000
).
54.
Z.
Qu
,
A.
Garfinkel
,
P.-S.
Chen
, and
J. N.
Weiss
, “
Mechanisms of discordant alternans and induction of reentry in simulated cardiac tissue
,”
Circulation
102
,
1664
1670
(
2000
).

Supplementary Material

You do not currently have access to this content.