Transient or partial synchronization can be used to do computations, although a fully synchronized network is sometimes related to the onset of epileptic seizures. Here, we propose a homeostatic mechanism that is capable of maintaining a neuronal network at the edge of a synchronization transition, thereby avoiding the harmful consequences of a fully synchronized network. We model neurons by maps since they are dynamically richer than integrate-and-fire models and more computationally efficient than conductance-based approaches. We first describe the synchronization phase transition of a dense network of neurons with different tonic spiking frequencies coupled by gap junctions. We show that at the transition critical point, inputs optimally reverberate through the network activity through transient synchronization. Then, we introduce a local homeostatic dynamic in the synaptic coupling and show that it produces a robust self-organization toward the edge of this phase transition. We discuss the potential biological consequences of this self-organization process, such as its relation to the Brain Criticality hypothesis, its input processing capacity, and how its malfunction could lead to pathological synchronization and the onset of seizure-like activity.

1.
R.
Brette
, “
Computing with neural synchrony
,”
PLoS Comput. Biol.
8
,
e1002561
(
2012
).
2.
E. M.
Izhikevich
, “
Polychronization: Computation with spikes
,”
Neural Comput.
18
,
245
282
(
2006
).
3.
A.
Palmigiano
,
T.
Geisel
,
F.
Wolf
, and
D.
Battaglia
, “
Flexible information routing by transient synchrony
,”
Nat. Neurosci.
20
,
1014
1022
(
2017
).
4.
K.
Lehnertz
,
S.
Bialonski
,
M.-T.
Horstmann
,
D.
Krug
,
A.
Rothkegel
,
M.
Staniek
, and
T.
Wagner
, “
Synchronization phenomena in human epileptic brain networks
,”
J. Neurosci. Methods
183
,
42
48
(
2009
).
5.
S.
Rich
,
A.
Hutt
,
F. K.
Skinner
,
T. A.
Valiante
, and
J.
Lefebvre
, “
Neurostimulation stabilizes spiking neural networks by disrupting seizure-like oscillatory transitions
,”
Sci. Rep.
10
,
15408
(
2020
).
6.
V. K.
Jirsa
,
W. C.
Stacey
,
P. P.
Quilichini
,
A. I.
Ivanov
, and
C.
Bernard
, “
On the nature of seizure dynamics
,”
Brain
137
,
2210
2230
(
2014
).
7.
F.
Lopes da Silva
,
W.
Blanes
,
S. N.
Kalitzin
,
J.
Parra
,
P.
Suffczynski
, and
D. N.
Velis
, “
Epilepsies as dynamical diseases of brain systems: Basic models of the transition between normal and epileptic activity
,”
Epilepsia
44
(
Suppl 12
),
72
83
(
2003
).
8.
J. M.
Beggs
and
D.
Plenz
, “
Neuronal avalanches in neocortical circuits
,”
J. Neurosci.
23
,
11167
11177
(
2003
).
9.
O.
Kinouchi
and
M.
Copelli
, “
Optimal dynamical range of excitable networks at criticality
,”
Nat. Phys.
2
,
348
351
(
2006
).
10.
J. M.
Beggs
, “
The criticality hypothesis: How local cortical networks might optimize information processing
,”
Philos. Trans. R. Soc. A
366
,
329
343
(
2008
).
11.
W. L.
Shew
and
D.
Plenz
, “
The functional benefits of criticality in the cortex
,”
Neuroscientist
19
,
88
100
(
2013
).
12.
L.
Cocchi
,
L. L.
Gollo
,
A.
Zalesky
, and
M.
Breakspear
, “
Criticality in the brain: A synthesis of neurobiology, models and cognition
,”
Prog. Neurobiol.
158
,
132
152
(
2017
).
13.
M.
Girardi-Schappo
, “
Brain criticality beyond avalanches: Open problems and how to approach them
,”
J. Phys. Complex
2
,
031003
(
2021
).
14.
D.
Plenz
,
T. L.
Ribeiro
,
S. R.
Miller
,
P. A.
Kells
,
A.
Vakili
, and
E. L.
Capek
, “
Self-organized criticality in the brain
,”
Front. Phys.
9
,
639389
(
2021
).
15.
J.
O’Byrne
and
K.
Jerbi
, “
How critical is brain criticality?
,”
Trends Neurosci.
45
,
820
837
(
2022
).
16.
T. T. A.
Carvalho
,
A. J.
Fontenele
,
M.
Girardi-Schappo
,
T.
Feliciano
,
L. A. A.
Aguiar
,
T. P. L.
Silva
,
N. A. P.
de Vasconcelos
,
P. V.
Carelli
, and
M.
Copelli
, “
Subsampled directed-percolation models explain scaling relations experimentally observed in the brain
,”
Front. Neural Circuits
14
,
83
(
2021
).
17.
A.
Ponce-Alvarez
,
A.
Jouary
,
M.
Privat
,
G.
Deco
, and
G.
Sumbre
, “
Whole-brain neuronal activity displays crackling noise dynamics
,”
Neuron
100
,
1446
1459.e6
(
2018
).
18.
A.
Levina
,
J. M.
Herrmann
, and
T.
Geisel
, “
Dynamical synapses causing self-organized criticality in neural networks
,”
Nat. Phys.
3
,
857
860
(
2007
).
19.
O.
Kinouchi
,
L.
Brochini
,
A. A.
Costa
,
C. J. G.
F
, and
M.
Copelli
, “
Stochastic oscillations and dragon king avalanches in self-organized quasi-critical systems
,”
Sci. Rep.
9
,
3874
(
2019
).
20.
M.
Girardi-Schappo
,
L.
Brochini
,
A. A.
Costa
,
T. T. A.
Carvalho
, and
O.
Kinouchi
, “
Synaptic balance due to homeostatically self-organized quasi-critical dynamics
,”
Phys. Rev. Res.
2
,
012042
(
2020
).
21.
M.
Girardi-Schappo
,
E. F.
Galera
,
T. T.
Carvalho
,
L.
Brochini
,
N. L.
Kamiji
,
A. C.
Roque
, and
O.
Kinouchi
, “
A unified theory of E/I synaptic balance, quasicritical neuronal avalanches and asynchronous irregular spiking
,”
J. Phys. Complex.
2
,
045001
(
2021
).
22.
G.
Menesse
,
B.
Marin
,
M.
Girardi-Schappo
, and
O.
Kinouchi
, “
Homeostatic criticality in neuronal networks
,”
Chaos Solitons Fractals
156
,
111877
(
2022
).
23.
O.
Kinouchi
,
R.
Pazzini
, and
M.
Copelli
, “
Mechanisms of self-organized quasicriticality in neuronal networks models
,”
Front. Phys.
8
,
583213
(
2020
).
24.
D. R.
Chialvo
,
S. A.
Cannas
,
T. S.
Grigera
,
D. A.
Martin
, and
D.
Plenz
, “
Controlling a complex system near its critical point via temporal correlations
,”
Sci. Rep.
10
,
12145
(
2020
).
25.
V.
Buendia
,
S.
di Santo
,
J. A.
Bonachela
, and
M. A.
Muñoz
, “
Feedback mechanisms for self-organization to the edge of a phase transition
,”
Front. Phys.
8
,
333
(
2020
).
26.
S.-S.
Poil
,
R.
Hardstone
,
H. D.
Mansvelder
, and
K.
Linkenkaer-Hansen
, “
Critical-state dynamics of avalanches and oscillations jointly emerge from balanced excitation/inhibition in neuronal networks
,”
J. Neurosci.
32
,
9817
9823
(
2012
).
27.
S.
Di Santo
,
P.
Villegas
,
R.
Burioni
, and
M. A.
Muñoz
, “
Landau–Ginzburg theory of cortex dynamics: Scale-free avalanches emerge at the edge of synchronization
,”
Proc. Natl. Acad. Sci. U.S.A.
115
,
E1356
E1365
(
2018
).
28.
L.
Dalla Porta
and
M.
Copelli
, “
Modeling neuronal avalanches and longrange temporal correlations at the emergence of collective oscillations: Continuously varying exponents mimic M/EEG results
,”
PLoS Comput. Biol.
15
,
e1006924
(
2019
).
29.
V.
Buendía
,
P.
Villegas
,
R.
Burioni
, and
M. A.
Muñoz
, “
Hybrid-type synchronization transitions: Where incipient oscillations, scale-free avalanches, and bistability live together
,”
Phys. Rev. Res.
3
,
023224
(
2021
).
30.
S.-S.
Poil
,
A.
van Ooyen
, and
K.
Linkenkaer-Hansen
, “
Avalanche dynamics of human brain oscillations: Relation to critical branching processes and temporal correlations
,”
Hum. Brain Mapp.
29
,
770
777
(
2008
).
31.
O.
Kinouchi
and
M. H. R.
Tragtenberg
, “
Modeling neurons by simple maps
,”
Int. J. Bifurcat. Chaos
6
,
2343
2360
(
1996
).
32.
M.
Girardi-Schappo
,
G. S.
Bortolotto
,
R. V.
Stenzinger
,
J. J.
Gonsalves
, and
M. H.
Tragtenberg
, “
Phase diagrams and dynamics of a computationally efficient map-based neuron model
,”
PLoS One
12
,
e0174621
(
2017
).
33.
M.
Courbage
and
V. I.
Nekorkin
, “
Map-based models in neurodynamics
,”
Int. J. Bifurcat. Chaos
20
,
1631
1651
(
2010
).
34.
B.
Ibarz
,
J. M.
Casado
, and
M. A. F.
Sanjuán
, “
Map-based models in neuronal dynamics
,”
Phys. Rep.
501
,
1
74
(
2011
).
35.
M.
Girardi-Schappo
,
M.
Tragtenberg
, and
O.
Kinouchi
, “
A brief history of excitable map-based neurons and neural networks
,”
J. Neurosci. Methods
220
,
116
130
(
2013
).
36.
S. M.
Kuva
,
G. F.
Lima
,
O.
Kinouchi
,
M. H.
Tragtenberg
, and
A. C.
Roque
, “
A minimal model for excitable and bursting elements
,”
Neurocomputing
38-40
,
255
261
(
2001
).
37.
M.
Copelli
,
M.
Tragtenberg
, and
O.
Kinouchi
, “
Stability diagrams for bursting neurons modeled by three-variable maps
,”
Physica A
342
,
263
269
(
2004
).
38.
M.
Girardi-Schappo
,
O.
Kinouchi
, and
M. H. R.
Tragtenberg
, “
Critical avalanches and subsampling in map-based neural networks coupled with noisy synapses
,”
Phys. Rev. E
88
,
024701
(
2013
).
39.
C. S. O.
Yokoi
,
M. J.
de Oliveira
, and
S. R.
Salinas
, “
Strange attractor in the Ising model with competing interactions on the Cayley tree
,”
Phys. Rev. Lett.
54
(
3
),
163
166
(
1985
).
40.
M. H. R.
Tragtenberg
and
C. S. O.
Yokoi
, “
Field behavior of an ising model with competing interactions on the bethe lattice
,”
Phys. Rev. E
52
(
3
),
2187
2197
(
1995
).
41.
O.
Kinouchi
, “Extended dynamical range as a collective property of excitable cells,” arXiv:cond-mat/0108404 [cond-mat.dis-nn] (2001).
42.
J. L.
Hindmarsh
and
R.
Rose
, “
A model of neuronal bursting using three coupled first order differential equations
,”
Proc. R. Soc. Lond. B Biol. Sci.
221
,
87
102
(
1984
).
43.
S. H.
Strogatz
,
Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry, and Engineering
(
Westview Press
,
2001
).
44.
A.
Roth
and
M. C. W.
van Rossum
, “Modeling synapses,” in Computational Modeling Methods for Neurocientists, edited by E. de Schutter (The MIT Press, Cambridge, MA, 2010).
45.
Y.
Kuramoto
,
Chemical Oscillations, Waves, and Turbulence
(
Springer
,
Berlin
,
1984
), Vol. 19.
46.
N.
Brunel
, “
Dynamics of sparsely connected networks of excitatory and inhibitory spiking neurons
,”
J. Comput. Neurosci.
8
,
183
208
(
2000
).
47.
D.
Golomb
and
J.
Rinzel
, “
Clustering in globally coupled inhibitory neurons
,”
Physica D
72
,
259
282
(
1994
).
48.
D.
Golomb
, “
Neuronal synchrony measures
,”
Scholarpedia
2
,
1347
(
2007
), revision #128277.
49.
L.
Brochini
,
A. A.
Costa
,
M.
Abadi
,
A. C.
Roque
,
J.
Stolfi
, and
O.
Kinouchi
, “
Phase transitions and self-organized criticality in networks of stochastic spiking neurons
,”
Sci. Rep.
6
,
35831
(
2016
).
50.
A. A.
Costa
,
M. J.
Amon
,
O.
Sporns
, and
L. H.
Favela
, “Fractal analyses of networks of integrate-and-fire stochastic spiking neurons,” in International Workshop on Complex Networks (Springer, 2018), pp. 161–171.
51.
G.
Menesse
and
O.
Kinouchi
, “
Less is different: Why sparse networks with inhibition differ from complete graphs
,”
Phys. Rev. E
108
,
024315
(
2023
).
52.
K.
Holthoff
,
Y.
Kovalchuk
, and
A.
Konnerth
, “
Dendritic spikes and activity-dependent synaptic plasticity
,”
Cell Tissue Res.
326
,
369
377
(
2006
).
53.
L. L.
Gollo
,
O.
Kinouchi
, and
M.
Copelli
, “
Active dendrites enhance neuronal dynamic range
,”
PLoS Comput. Biol.
5
,
e1000402
(
2009
).
54.
R. O.
Shimoura
,
R. F. O.
Pena
,
V.
Lima
,
N. L.
Kamiji
,
M.
Girardi-Schappo
, and
A. C.
Roque
, “
Building a model of the brain: From detailed connectivity maps to network organization
,”
Eur. Phys. J. Spec. Top.
230
,
2887
2909
(
2021
).
55.
I. R.
Graf
and
B. B.
Machta
, “
A bifurcation integrates information from many noisy ion channels and allows for milli-kelvin thermal sensitivity in the snake pit organ
,”
Proc. Natl. Acad. Sci. U.S.A.
121
,
e2308215121
(
2024
).
56.
J. A.
Bonachela
,
S.
de Franciscis
,
J. J.
Torres
, and
M. A.
Muñoz
, “
Self-organization without conservation: Are neuronal avalanches generically critical?
,”
J. Stat. Mech.
2010
,
P02015
(
2010
).
57.
F.
van Ede
,
A. J.
Quinn
,
M. W.
Woolrich
, and
A. C.
Nobre
, “
Neural oscillations: Sustained rhythms or transient burst-events?
,”
Trends Neurosci.
41
,
415
417
(
2018
).
58.
I.
Tal
,
S.
Neymotin
,
S.
Bickel
,
P.
Lakatos
, and
C. E.
Schroeder
, “
Oscillatory bursting as a mechanism for temporal coupling and information coding
,”
Front. Comput. Neurosci.
14
,
82
(
2020
).
59.
R.
Schmidt
,
J.
Rose
, and
V.
Muralidharan
, “
Transient oscillations as computations for cognition: Analysis, modeling and function
,”
Curr. Opin. Neurobiol.
83
,
102796
(
2023
).
60.
A. A.
Costa
,
L.
Brochini
, and
O.
Kinouchi
, “
Self-organized supercriticality and oscillations in networks of stochastic spiking neurons
,”
Entropy
19
,
399
(
2017
).
61.
K.
Kaneko
, “
Relevance of dynamic clustering to biological networks
,”
Physica D
75
,
55
73
(
1994
).
62.
K.
Kaneko
,
Theory and Applications of Coupled Map Lattices
(
Wiley
,
1993
).
63.
V.
Hernandez-Urbina
and
J. M.
Herrmann
, “
Self-organized criticality via retro-synaptic signals
,”
Front. Phys.
4
,
54
(
2017
).
64.
R.
Dickman
,
M. A.
Muñoz
,
A.
Vespignani
, and
S.
Zapperi
, “
Paths to self-organized criticality
,”
Braz. J. Phys.
30
,
27
41
(
2000
).
65.
P.
Bak
,
C.
Tang
, and
K.
Wiesenfeld
, “
Self-organized criticality: An explanation of the 1/f noise
,”
Phys. Rev. Lett.
59
,
381
(
1987
).
66.
P.
Jiruska
,
M.
De Curtis
,
J. G.
Jefferys
,
C. A.
Schevon
,
S. J.
Schiff
, and
K.
Schindler
, “
Synchronization and desynchronization in epilepsy: Controversies and hypotheses
,”
J. Physiol.
591
,
787
797
(
2013
).
67.
B. C.
Bernhardt
,
S.
Hong
,
A.
Bernasconi
, and
N.
Bernasconi
, “
Imaging structural and functional brain networks in temporal lobe epilepsy
,”
Front. Hum. Neurosci.
7
,
624
(
2013
).
68.
M.
Girardi-Schappo
,
F.
Fadaie
,
H. M.
Lee
,
B.
Caldairou
,
V.
Sziklas
,
J.
Crane
,
B. C.
Bernhardt
,
A.
Bernasconi
, and
N.
Bernasconi
, “
Altered communication dynamics reflect cognitive deficits in temporal lobe epilepsy
,”
Epilepsia
62
,
1022
1033
(
2021
).
69.
C.
Meisel
,
A.
Storch
,
S.
Hallmeyer-Elgner
,
E.
Bullmore
, and
T.
Gross
, “
Failure of adaptive self-organized criticality during epileptic seizure attacks
,”
PLoS Comput. Biol.
8
,
e1002312
(
2012
).
70.
C.
Meisel
, “
Antiepileptic drugs induce subcritical dynamics in human cortical networks
,”
Proc. Natl. Acad. Sci. U.S.A.
117
,
11118
11125
(
2020
).
71.
M. I.
Maturana
,
C.
Meisel
,
K.
Dell
,
P. J.
Karoly
,
W.
D’Souza
,
D. B.
Grayden
,
A. N.
Burkitt
,
P.
Jiruska
,
J.
Kudlacek
,
J.
Hlinka
et al., “
Critical slowing down as a biomarker for seizure susceptibility
,”
Nat. Commun.
11
,
2172
(
2020
).
72.
J.
Žiburkus
,
J. R.
Cressman
, and
S. J.
Schiff
, “
Seizures as imbalanced up states: Excitatory and inhibitory conductances during seizure-like events
,”
J. Neurophysiol.
109
,
1296
1306
(
2013
).
73.
K.
Chen
,
I.
Aradi
,
N.
Thon
,
M.
Eghbal-Ahmadi
,
T. Z.
Baram
, and
I.
Soltesz
, “
Persistently modified h-channels after complex febrile seizures convert the seizure-induced enhancement of inhibition to hyperexcitability
,”
Nat. Med.
7
,
331
337
(
2001
).
74.
D. E.
Naylor
, “
Glutamate and GABA in the balance: Convergent pathways sustain seizures during status epilepticus
,”
Epilepsia
51
,
106
109
(
2010
).
75.
D.
Kasteleijn-Nolst Trenité
,
G.
Rubboli
,
E.
Hirsch
,
A.
Martins da Silva
,
S.
Seri
,
A.
Wilkins
,
J.
Parra
,
A.
Covanis
,
M.
Elia
,
G.
Capovilla
,
U.
Stephani
, and
G.
Harding
, “
Methodology of photic stimulation revisited: Updated European algorithm for visual stimulation in the EEG laboratory
,”
Epilepsia
53
,
16
24
(
2011
).
76.
D.
Hermes
,
D. G. A.
Kasteleijn-Nolst Trenité
, and
J.
Winawer
, “
Gamma oscillations and photosensitive epilepsy
,”
Curr. Biol.
27
,
R336
R338
(
2017
).
77.
C. J.
Honey
and
T.
Valiante
, “
Neuroscience: When a single image can cause a seizure
,”
Curr. Biol.
27
,
R394
R397
(
2017
).
78.
E.
Sayari
,
A. M.
Batista
,
E. C.
Gabrick
,
K. C.
Iarosz
,
M.
Hansen
,
J. D.
Szezech Jr
, and
F. S.
Borges
, “
Dynamics of a perturbed random neuronal network with burst-timing-dependent plasticity
,”
Eur. Phys. J. Spec. Top.
231
,
4049
4056
(
2022
).
79.
B.
Boaretto
,
R.
Budzinski
,
T.
Prado
, and
S.
Lopes
, “
Mechanism for explosive synchronization of neural networks
,”
Phys. Rev. E
100
,
052301
(
2019
).
80.
D. G.
Clark
and
L. F.
Abbott
, “
Theory of coupled neuronal-synaptic dynamics
,”
Phys. Rev. X
14
,
021001
(
2024
).
81.
H.
Sompolinsky
,
A.
Crisanti
, and
H. J.
Sommers
, “
Chaos in random neural networks
,”
Phys. Rev. Lett.
61
,
259
262
(
1988
).
82.
M.
Rosenblum
and
A.
Pikovsky
, “
Delayed feedback control of collective synchrony: An approach to suppression of pathological brain rhythms
,”
Phys. Rev. E
70
,
041904
(
2004
).
83.
E. L.
Lameu
,
F. S.
Borges
,
R. R.
Borges
,
K. C.
Iarosz
,
I. L.
Caldas
,
A. M.
Batista
,
R. L.
Viana
, and
J.
Kurths
, “
Suppression of phase synchronisation in network based on cat’s brain
,”
Chaos
26
,
043107
(
2016
).
84.
M.
Mugnaine
,
A. S.
Reis
,
F. S.
Borges
,
R. R.
Borges
,
F. A.
Ferrari
,
K. C.
Iarosz
,
I. L.
Caldas
,
E. L.
Lameu
,
R. L.
Viana
,
J. D.
Szezech
,
J.
Kurths
, and
A. M.
Batista
, “
Delayed feedback control of phase synchronisation in a neuronal network model
,”
Eur. Phys. J. Spec. Top.
227
,
1151
1160
(
2018
).
85.
A. S.
Reis
,
K. C.
Iarosz
,
F. A.
Ferrari
,
I. L.
Caldas
,
A. M.
Batista
, and
R. L.
Viana
, “
Bursting synchronization in neuronal assemblies of scale-free networks
,”
Chaos Solitons Fractals
142
,
110395
(
2021
).

Supplementary Material

You do not currently have access to this content.