This paper investigates dynamical behaviors and controllability of some nonautonomous localized waves based on the Gross–Pitaevskii equation with attractive interatomic interactions. Our approach is a relation constructed between the Gross–Pitaevskii equation and the standard nonlinear Schrödinger equation through a new self-similarity transformation which is to convert the exact solutions of the latter to the former’s. Subsequently, one can obtain the nonautonomous breather solutions and higher-order rogue wave solutions of the Gross–Pitaevskii equation. It has been shown that the nonautonomous localized waves can be controlled by the parameters within the self-similarity transformation, rather than relying solely on the nonlinear intensity, spectral parameters, and external potential. The control mechanism can induce an unusual number of loosely bound higher-order rogue waves. The asymptotic analysis of unusual loosely bound rogue waves shows that their essence is energy transfer among rogue waves. Numerical simulations test the dynamical stability of obtained localized wave solutions, which indicate that modifying the parameters in the self-similarity transformation can improve the stability of unstable localized waves and prolong their lifespan. We numerically confirm that the rogue wave controlled by the self-similarity transformation can be reproduced from a chaotic initial background field, hence anticipating the feasibility of its experimental observation, and propose an experimental method for observing these phenomena in Bose–Einstein condensates. The method presented in this paper can help to induce and observe new stable localized waves in some physical systems.

1.
A.
Gelash
,
D.
Agafontsev
,
V.
Zakharov
,
G.
El
,
S.
Randoux
, and
P.
Suret
, “
Bound state soliton gas dynamics underlying the spontaneous modulational instability
,”
Phys. Rev. Lett.
123
,
234102
(
2019
).
2.
D. J.
Kedziora
,
A.
Ankiewicz
, and
N.
Akhmediev
, “
Second-order nonlinear Schrödinger equation breather solutions in the degenerate and rogue wave limits
,”
Phys. Rev. E
85
,
066601
(
2012
).
3.
N.
Akhmediev
,
A.
Ankiewicz
, and
J. M.
Soto-Crespo
, “
Rogue waves and rational solutions of the nonlinear Schrödinger equation
,”
Phys. Rev. E
80
,
026601
(
2009
).
4.
B.
Guo
,
L.
Ling
, and
Q. P.
Liu
, “
Nonlinear Schrödinger equation: Generalized Darboux transformation and rogue wave solutions
,”
Phys. Rev. E
85
,
026607
(
2012
).
5.
B. Q.
Li
and
Y. L.
Ma
, “
Extended generalized Darboux transformation to hybrid rogue wave and breather solutions for a nonlinear Schrödinger equation
,”
Appl. Math. Comput.
386
,
125469
(
2020
).
6.
N. J.
Zabusky
and
M. A.
Porter
, “
Soliton
,”
Scholarpedia
5
(
8
),
2068
(
2010
).
7.
P. G.
Kevrekidis
,
D. J.
Frantzeskakis
, and
R.
Carretero-Gonzälez
et al.,
Emergent Nonlinear Phenomena in Bose-Einstein Condensates
(
Springer-Verlag
,
Berlin
,
2009
).
8.
A.
Syrwid
,
M.
Brewczyk
,
M.
Gajda
, and
K.
Sacha
, “
Single-shot simulations of dynamics of quantum dark solitons
,”
Phys. Rev. A
94
,
023623
(
2016
).
9.
S.
Burger
,
K.
Bongs
,
S.
Dettmer
,
W.
Ertmer
et al., “
Dark solitons in Bose-Einstein condensates
,”
Phys. Rev. Lett.
83
,
5198
(
1999
).
10.
L.
Khaykovich
,
F.
Schreck
,
G.
Ferrari
,
T.
Bourdel
et al., “
Formation of a matter-wave bright soliton
,”
Science
296
,
1290
1293
(
2002
).
11.
N. N.
Akhmediev
and
V. I.
Korneev
, “
Modulation instability and periodic solutions of nonlinear Schrödinger equation
,”
Theor. Math. Phys.
69
,
1089
1093
(
1986
).
12.
N. V.
Priya
,
M.
Senthilvelan
, and
M.
Lakshmanan
, “
Akhmediev breathers, Ma solitons, and general breathers from rogue waves: A case study in the Manakov system
,”
Phys. Rev. E
88
,
022918
(
2013
).
13.
Y. C.
Ma
, “
The perturbed plane-wave solutions of the cubic Schrödinger equation
,”
Stud. Appl. Math.
60
,
43
58
(
1979
).
14.
D. H.
Peregrine
, “
Water waves, nonlinear Schrödinger equations and their solutions
,”
J. Austral Math. Soc. Ser. B
25
,
16
43
(
1983
).
15.
C.
Kharif
,
E.
Pelinovsky
, and
A.
Slunyaev
,
Rogue Waves in the Ocean
(
Springer-Verlag
,
Berlin
,
2009
).
16.
C.
Kharif
and
E.
Pelinovsky
, “
Physical mechanisms of the rogue wave phenomenon
,”
Eur. J. Mech. B Fluid
22
,
603
634
(
2003
).
17.
D. R.
Solli
,
C.
Ropers
,
P.
Koonath
, and
B.
Jalali
, “
Optical rogue waves
,”
Nature
450
,
1054
1057
(
2007
).
18.
P.
Suret
,
R. E.
Koussaifi
,
A.
Tikan
,
C.
Evain
et al., “
Single-shot observation of optical rogue waves in integrable turbulence using time microscopy
,”
Nat. Commun.
7
,
13136
(
2016
).
19.
A.
Tikan
,
C.
Billet
,
G.
El
,
A.
Tovbis
et al., “
Universality of the Peregrine soliton in the focusing dynamics of the cubic nonlinear Schrödinger equation
,”
Phys. Rev. Lett.
119
,
033901
(
2017
).
20.
J. M.
Dudley
,
G.
Genty
,
A.
Mussot
,
A.
Chabchoub
, and
F.
Dias
, “
Rogue waves and analogies in optics and oceanography
,”
Nat. Rev. Phys.
1
,
675
689
(
2019
).
21.
A.
Chabchoub
,
N. P.
Hoffmann
, and
N.
Akhmediev
, “
Rogue wave observation in a water wave tank
,”
Phys. Rev. Lett.
106
,
204502
(
2011
).
22.
G.
Dematteis
,
T.
Grafke
,
M.
Onorato
, and
E.
Vanden-Eijnden
, “
Experimental evidence of hydrodynamic instantons: The universal route to rogue waves
,”
Phys. Rev. X
9
,
041057
(
2019
).
23.
S. A. T.
Fonkoua
,
F. B.
Pelap
,
G. R.
Deffo
, and
A.
Fomethé
, “
Rogue wave signals in a coupled anharmonic network: Effects of the transverse direction
,”
Eur. Phys. J. Plus
136
,
416
(
2021
).
24.
E.
Kengne
,
W. M.
Liu
,
L. Q.
English
, and
B. A.
Malomed
, “
Ginzburg-Landau models of nonlinear electric transmission networks
,”
Phys. Rep.
982
,
1
124
(
2022
).
25.
M.
Shats
,
H.
Punzmann
, and
H.
Xia
, “
Capillary rogue waves
,”
Phys. Rev. Lett.
104
,
104503
(
2010
).
26.
Z.
Yan
, “
Vector financial rogue waves
,”
Phys. Lett. A
375
,
4274
4279
(
2011
).
27.
Y. V.
Bludov
,
V. V.
Konotop
, and
N.
Akhmediev
, “
Matter rogue waves
,”
Phys. Rev. A
80
,
033610
(
2009
).
28.
L.
Wen
,
L.
Li
,
Z. D.
Li
,
S. W.
Song
,
X. F.
Zhang
, and
W. M.
Liu
, “
Matter rogue wave in Bose-Einstein condensates with attractive atomic interaction
,”
Eur. Phys. J. D
64
,
473
478
(
2011
).
29.
A. H.
Arnous
,
A.
Biswas
,
Y.
Yildirim
,
Q.
Zhou
et al., “
Cubic-quartic optical soliton perturbation with complex Ginzburg–Landau equation by the enhanced Kudryashov’s method
,”
Chaos Soliton. Fract.
155
,
111748
(
2022
).
30.
B. A.
Malomed
, “
New findings for the old problem: Exact solutions for domain walls in coupled real Ginzburg-Landau equations
,”
Phys. Lett. A
422
,
127802
(
2022
).
31.
C. C.
Ballard
,
C. C.
Esty
, and
D. A.
Egolf
, “
Finding equilibrium in the spatiotemporal chaos of the complex Ginzburg-Landau equation
,”
Chaos
26
,
113101
(
2016
).
32.
Y.
Wang
,
Y.
Chen
,
J.
Dai
,
L
Zhao
,
W.
Wen
, and
W.
Wang
, “
Soliton evolution and associated sonic horizon formation dynamics in two-dimensional Bose-Einstein condensate with quintic-order nonlinearity
,”
Chaos
31
,
023105
(
2021
).
33.
M. O. D.
Alotaibi
and
L. D.
Carr
, “
Internal oscillations of a dark-bright soliton in a harmonic potential
,”
J. Phys. B: At. Mol. Opt. Phys.
51
,
205004
(
2018
).
34.
H.
Triki
,
A.
Choudhuri
,
Q.
Zhou
,
A.
Biswas
, and
A. S.
Alshomrani
, “
Nonautonomous matter wave bright solitons in a quasi-1D Bose-Einstein condensate system with contact repulsion and dipole-dipole attraction
,”
Appl. Math. Comput.
371
,
124951
(
2020
).
35.
T.
Xu
and
Y.
Chen
, “
Darboux transformation of the coupled nonisospectral Gross-Pitaevskii system and its multi-component generalization
,”
Commun. Nonlinear Sci. Numer. Simulat.
57
,
276
289
(
2018
).
36.
L.
Pitaevskii
and
S.
Stringari
,
Bose-Einstein Condensation and Superfluidity
(
Oxford University Press
,
Oxford
,
2016
).
37.
M.
Ueda
,
Fundamentals and New Frontiers of Bose-Einstein Condensation
(
World Scientific
,
Singapore
,
2010
).
38.
D. S.
Wang
,
X. H.
Hu
,
J.
Hu
, and
W. M.
Liu
, “
Quantized quasi-two-dimensional Bose-Einstein condensates with spatially modulated nonlinearity
,”
Phys. Rev. A
81
,
025604
(
2010
).
39.
R.
Qi
,
Z.
Shi
, and
H.
Zhai
, “
Maximum energy growth rate in dilute quantum gases
,”
Phys. Rev. Lett.
126
,
240401
(
2021
).
40.
M. S.
Bulakhov
,
A. S.
Peletminskii
,
S. V.
Peletminskii
, and
Y. V.
Slyusarenko
, “
Magnetic phases and phase diagram of spin- 1 condensate with quadrupole degrees of freedom
,”
J. Phys. A: Math. Theor.
54
,
165001
(
2021
).
41.
A.
Hasegawa
and
Y.
Kodama
,
Solitons in Optical Communications
(
Clarendon Press
,
Oxford
,
1995
).
42.
M.
Kono
and
M.
Škoric̀
,
Nonlinear Physics of Plasmas
(
Springer-Verlag
,
Berlin
,
2010
).
43.
A.
Biswas
and
C. M.
Khalique
, “
A study of Langmuir waves in plasmas
,”
Commun. Nonlinear Sci. Numer. Simulat.
15
,
2245
2248
(
2010
).
44.
Q.
Zhou
and
M.
Mirzazadeh
, “
Analytical solitons for Langmuir waves in plasma physics with cubic nonlinearity and perturbations
,”
Z. Naturforsch. A
71
,
807
815
(
2016
).
45.
H.
Bailung
,
S. K.
Sharma
, and
Y.
Nakamura
, “
Observation of Peregrine solitons in a multicomponent plasma with negative ions
,”
Phys. Rev. Lett.
107
,
255005
(
2011
).
46.
J.
Denschlag
,
J. E.
Simsarian
,
D. L.
Feder
et al., “
Generating solitons by phase engineering of a Bose-Einstein condensate
,”
Science
287
,
97
101
(
2000
).
47.
A.
Trombettoni
and
A.
Smerzi
, “
Discrete solitons and breathers with dilute Bose-Einstein condensates
,”
Phys. Rev. Lett.
86
,
2353
(
2001
).
48.
A.
Romero-Ros
,
G. C.
Katsimiga
,
S. I.
Mistakidis
,
B.
Prinari
et al., “
Theoretical and numerical evidence for the potential realization of the Peregrine soliton in repulsive two-component Bose-Einstein condensates
,”
Phys. Rev. A
105
,
053306
(
2022
).
49.
M. H.
Anderson
,
J. R.
Ensher
,
M. R.
Matthews
,
C. E.
Wieman
, and
E. A.
Cornell
, “
Observation of Bose-Einstein condensation in a dilute atomic vapor
,”
Science
269
,
198
201
(
1995
).
50.
T.
Busch
and
J. R.
Anglin
, “
Dark-bright solitons in inhomogeneous Bose-Einstein condensates
,”
Phys. Rev. Lett.
87
,
010401
(
2001
).
51.
F.
Abdullaev
,
A.
Abdumalikov
, and
R.
Galimzyanov
, “
Gap solitons in Bose-Einstein condensates in linear and nonlinear optical lattices
,”
Phys. Lett. A
367
,
149
155
(
2007
).
52.
I.
Shomroni
,
E.
Lahoud
,
S.
Levy
, and
J.
Steinhauer
, “
Evidence for an oscillating soliton/vortex ring by density engineering of a Bose-Einstein condensate
,”
Nat. Phys.
5
,
193
197
(
2009
).
53.
M. R.
Matthews
,
B. P.
Anderson
,
P. C.
Haljan
,
D. S.
Hall
,
C. E.
Wieman
, and
E. A.
Cornell
, “
Vortices in a Bose-Einstein condensate
,”
Phys. Rev. Lett.
83
,
2498
(
1999
).
54.
D. S.
Wang
,
S. W.
Song
, and
W. M.
Liu
, “
Localized nonlinear matter waves in Bose-Einstein condensates with spatially and spatiotemporally modulated nonlinearities
,”
J. Phys.: Conf. Ser.
400
,
012078
(
2012
).
55.
D. S.
Wang
,
S. W.
Song
,
B.
Xiong
, and
W. M.
Liu
, “
Quantized vortices in a rotating Bose-Einstein condensate with spatiotemporally modulated interaction
,”
Phys. Rev. A
84
,
053607
(
2011
).
56.
P.
Engels
,
I.
Coddington
,
P. C.
Haljan
, and
E. A.
Cornell
, “
Nonequilibrium effects of anisotropic compression applied to vortex lattices in Bose-Einstein condensates
,”
Phys. Rev. Lett.
89
,
100403
(
2002
).
57.
D.
Witthaut
,
M.
Werder
,
S.
Mossmann
, and
H. J.
Korsch
, “
Bloch oscillations of Bose-Einstein condensates: Breakdown and revival
,”
Phys. Rev. E
71
,
036625
(
2005
).
58.
A. R.
Kolovsky
,
H. J.
Korsch
, and
E. M.
Graefe
, “
Bloch oscillations of Bose-Einstein condensates: Quantum counterpart of dynamical instability
,”
Phys. Rev. A
80
,
023617
(
2009
).
59.
V. V.
Konotop
,
P. G.
Kevrekidis
, and
M.
Salerno
, “
Landau-Zener tunneling of Bose-Einstein condensates in an optical lattice
,”
Phys. Rev. A
72
,
023611
(
2005
).
60.
M.
Greiner
,
O.
Mandel
,
T.
Esslinger
,
T. W.
Hänsch
, and
I.
Bloch
, “
Quantum phase transition from a superfluid to a Mott insulator in a gas of ultracold atoms
,”
Nature
415
,
39
44
(
2002
).
61.
L.
Fallani
,
F. S.
Cataliotti
,
J.
Catani
, and
C.
Fort
, “
Optically induced lensing effect on a Bose-Einstein condensate expanding in a moving lattice
,”
Phys. Rev. Lett.
91
,
240405
(
2003
).
62.
M.
Marinescu
and
L.
You
, “
Controlling atom-atom interaction at ultralow temperatures by dc electric fields
,”
Phys. Rev. Lett.
81
,
4596
(
1998
).
63.
S.
Inouye
,
M. R.
Andrews
,
J.
Stenger
, and
H.-J.
Miesner
,
D. M.
Stamper-Kurn
, and
W.
Ketterle
, “
Observation of Feshbach resonances in a Bose-Einstein condensate
,”
Nature
392
,
151
154
(
1998
).
64.
P. S.
Vinayagam
,
R.
Radha
, and
K.
Porsezian
, “
Taming rogue waves in vector Bose-Einstein condensates
,”
Phys. Rev. E
88
,
042906
(
2013
).
65.
C. C.
Ding
,
Y. T.
Gao
,
L.
Hu
, and
T. T.
Jia
, “
Soliton and breather interactions for a coupled system
,”
Eur. Phys. J. Plus
133
,
406
(
2018
).
66.
X. Y.
Wen
and
Z.
Yan
, “
Modulational instability and dynamics of multi-rogue wave solutions for the discrete Ablowitz-Ladik equation
,”
J. Math. Phys.
59
,
073511
(
2018
).
67.
K.
Manikandan
,
M.
Senthilvelan
, and
R. A.
Kraenkel
, “
Amplification of matter rogue waves and breathers in quasi-two-dimensional Bose-Einstein condensates
,”
Eur. Phys. J. B
89
,
30
(
2016
).
68.
B.
Yang
and
J.
Yang
, “
Rogue wave patterns in the nonlinear Schrödinger equation
,”
Phys. D
419
,
132850
(
2021
).
69.
P. G.
Kevrekidis
and
D. J.
Frantzeskakis
, “
Pattern forming dynamical instabilities of Bose-Einstein condensates
,”
Mod. Phys. Lett. B
18
,
173
202
(
2004
).
70.
V. A.
Brazhnyi
and
V. V.
Konotop
, “
Theory of nonlinear matter waves in optical lattices
,”
Mod. Phys. Lett. B
18
,
627
651
(
2004
).
71.
Z. X.
Liang
,
Z. D.
Zhang
, and
W. M.
Liu
, “
Dynamics of a bright soliton in Bose-Einstein condensates with time-dependent atomic scattering length in an expulsive parabolic potential
,”
Phys. Rev. Lett.
94
,
050402
(
2005
).
72.
F. K.
Abdullaev
,
A. M.
Kamchatnov
,
V. V.
Konotop
, and
V. A.
Brazhnyi
, “
Adiabatic dynamics of periodic waves in Bose-Einstein condensates with time dependent atomic scattering length
,”
Phys. Rev. Lett.
90
,
230402
(
2003
).
73.
V. V.
Konotop
and
M.
Salerno
, “
Modulational instability in Bose-Einstein condensates in optical lattices
,”
Phys. Rev. A
65
,
021602
(
2002
).
74.
E. H.
Lieb
,
R.
Seiringer
, and
J.
Yngvason
, “
A Rigorous derivation of the Gross–Pitaevskii energy functional for a two-dimensional Bose gas
,”
Comm. Math. Phys.
224
,
17
31
(
2001
).
75.
E. H.
Lieb
,
R.
Seiringer
, and
J.
Yngvason
, “
One-dimensional Bosons in three-dimensional traps
,”
Phys. Rev. Lett.
91
,
150401
(
2003
).
76.
J.
Yang
,
Nonlinear Waves in Integrable and Nonintegrable Systems
(
SIAM
,
Philadelphia
,
2010
).
77.
E.
Kengne
, “
Rogue waves of the dissipative Gross–Pitaevskii equation with distributed coefficients
,”
Eur. Phys. J. Plus
135
,
622
(
2020
).
78.
R. C.
López
,
G. H.
Sun
,
O.
Camacho-Nieto
,
C.
Yáñez-Márquez
, and
S. H.
Dong
, “
Analytical traveling-wave solutions to a generalized Gross–Pitaevskii equation with some new time and space varying nonlinearity coefficients and external fields
,”
Phys. Lett. A
381
,
2978
2985
(
2017
).
79.
H.
Wang
,
H.
Yang
,
X.
Meng
,
Y.
Tian
, and
W.
Liu
, “
Dynamics of controllable matter-wave solitons and soliton molecules for a Rabi-coupled Gross-Pitaevskii equation with temporally and spatially modulated coefficients
,”
SIAM J. Appl. Dyn. Syst.
23
,
748
778
(
2024
).
80.
D. S.
Wang
,
X. H.
Xu
, and
W. M.
Liu
, “
Localized nonlinear matter waves in two-component Bose-Einstein condensates with time- and space-modulated nonlinearities
,”
Phys. Rev. A
82
,
023612
(
2010
).
81.
Z.
Yan
, “
Two-dimensional vector rogue wave excitations and controlling parameters in the two-component Gross–Pitaevskii equations with varying potentials
,”
Nonlinear Dyn.
79
,
2515
2529
(
2015
).
82.
X.
Song
and
H. M.
Li
, “
Stable vortex solitons of (2+1)-dimensional cubic-quintic Gross-Pitaevskii equation with spatially inhomogeneous nonlinearities
,”
Phys. Lett. A
377
,
714
717
(
2013
).
83.
Y. X.
Chen
,
F. Q.
Xu
, and
Y. L.
Hu
, “
Excitation control for three-dimensional Peregrine solution and combined breather of a partially nonlocal variable-coefficient nonlinear Schrödinger equation
,”
Nonlinear Dyn.
95
,
1957
1964
(
2019
).
84.
C.
Dai
,
R.
Chen
, and
J.
Zhang
, “
Analytical spatiotemporal similaritons for the generalized (3+1)-dimensional Gross–Pitaevskii equation with an external harmonic trap
,”
Chaos Soliton. Fract.
44
,
862
870
(
2011
).
85.
F.
Yu
, “
Three-dimensional exact solutions of Gross–Pitaevskii equation with variable coefficients
,”
Appl. Math. Comput.
219
,
5779
5786
(
2013
).
86.
H. P.
Zhu
and
Y. J.
Xu
, “
High-dimensional vector solitons for a variable-coefficient partially nonlocal coupled Gross–Pitaevskii equation in a harmonic potential
,”
Appl. Math. Lett.
124
,
107701
(
2022
).
87.
G.
Zhang
and
Z.
Yan
, “
Then-component nonlinear Schrödinger equations: Dark-bright mixed N- and high-order solitons and breathers, and dynamics
,”
Proc. R. Soc. A
474
,
20170688
(
2018
).
88.
H. T.
Wang
,
X. Y.
Wen
, and
D. S.
Wang
, “
Modulational instability, interactions of localized wave structures and dynamics in the modified self-steepening nonlinear Schrödinger equation
,”
Wave Motion
91
,
102396
(
2019
).
89.
G.
Zhang
,
Z.
Yan
,
X. Y.
Wen
, and
Y.
Chen
, “
Interactions of localized wave structures and dynamics in the defocusing coupled nonlinear Schrödinger equations
,”
Phys. Rev. E
95
,
042201
(
2017
).
90.
G.
Zhang
,
Z.
Yan
, and
X. Y.
Wen
, “
Three-wave resonant interactions: Multi-dark-dark-dark solitons, breathers, rogue waves, and their interactions and dynamics
,”
Phys. D
366
,
27
42
(
2018
).
91.
S.
Chen
,
Y.
Ye
,
J. M.
Soto-Crespo
,
P.
Grelu
, and
F.
Baronio
, “
Peregrine solitons beyond the threefold limit and their two-soliton interactions
,”
Phys. Rev. Lett.
121
,
104101
(
2018
).
92.
S.
Chen
,
C.
Pan
,
P.
Grelu
,
F.
Baronio
, and
N.
Akhmediev
, “
Fundamental Peregrine solitons of ultrastrong amplitude enhancement through self-steepening in vector nonlinear systems
,”
Phys. Rev. Lett.
124
,
113901
(
2020
).
You do not currently have access to this content.