We consider bipartite tight-binding graphs composed by N nodes split into two sets of equal size: one set containing nodes with on-site loss, the other set having nodes with on-site gain. The nodes are connected randomly with probability p. Specifically, we measure the connectivity between the two sets with the parameter α, which is the ratio of current adjacent pairs over the total number of possible adjacent pairs between the sets. For general undirected-graph setups, the non-Hermitian Hamiltonian H ( γ , α , N ) of this model presents pseudo-Hermiticity, where γ is the loss/gain strength. However, we show that for a given graph setup H ( γ , α , N ) becomes P T-symmetric. In both scenarios (pseudo-Hermiticity and P T-symmetric), depending on the parameter combination, the spectra of H ( γ , α , N ) can be real even when it is non-Hermitian. Then we demonstrate, for both setups, that there is a well-defined sector of the γ α-plane (which grows with N) where the spectrum of H ( γ , α , N ) is predominantly real.

1.
G.
Hennequin
,
T. P.
Vogels
, and
W.
Gerstner
, “
Optimal control of transient dynamics in balanced networks supports generation of complex movements
,”
Neuron
82
,
1394
1406
(
2014
).
2.
Y.
Ashida
,
Z.
Gong
, and
M.
Ueda
, “
Non-Hermitian physics
,”
Adv. Phys.
69
,
249
435
(
2020
).
3.
M.
Gaio
,
D.
Saxena
,
J.
Bertolotti
,
D.
Pisignano
,
A.
Camposeo
, and
R.
Sapienza
, “
A nanophotonic laser on a graph
,”
Nat. Commun.
10
,
226
(
2019
).
4.
S.
Rotter
, “
Network lasers
,”
Nat. Photonics
13
,
140
141
(
2019
).
5.
D.
Lin
,
J.
Carpenter
,
Y.
Feng
,
S.
Jain
,
Y.
Jung
,
Y.
Feng
,
M. N.
Zervas
, and
D. J.
Richardson
, “
Reconfigurable structured light generation in a multicore fibre amplifier
,”
Nat. Commun.
11
,
3986
(
2020
).
6.
H.
Benisty
,
A.
Lupu
, and
A.
Degiron
, “
Transverse periodic PT symmetry for modal demultiplexing in optical waveguides
,”
Phys. Rev. A
91
,
053825
(
2015
).
7.
T.
Badloe
,
J.
Lee
,
J.
Seong
, and
J.
Rho
, “
Tunable metasurfaces: The path to fully active nanophotonics
,”
Adv. Photonics Res.
2
,
2000205
(
2021
).
8.
H.
Benisty
,
J. J.
Greffet
, and
P.
Lalanne
,
Introduction to Nanophotonics
(
Oxford University Press
,
Oxford
,
2022
).
9.
C. T.
Martínez-Martínez
and
J. A.
Méndez-Bermúdez
, “
Information entropy of tight-binding random networks with losses and gain: Scaling and universality
,”
Entropy
21
,
86
(
2019
).
10.
H.
Benisty
and
C.
Goupil
, “
Configuration barrier towards parity-time symmetry in randomly connected mesoscopic sets on a graph
,”
Eur. Phys. J. B
93
,
192
(
2020
).
11.
M. R.
Gardner
and
W. R.
Ashby
, “
Connectance of large dynamic (cybernetic) systems: Critical values for stability
,”
Nature
228
,
784
(
1970
).
12.
R. M.
May
, “
Will a large complex system be stable
,”
Nature
238
,
413
(
1972
).
13.
S.
Allesina
and
S.
Tang
, “
The stability-complexity relationship at age 40: A random matrix perspective
,”
Popul. Ecol.
57
,
63
(
2015
).
14.
Y. N.
Demkov
and
V. N.
Ostrovsky
, “
Crossing of two band of potential curves
,”
J. Phys. B. At. Mol. Opt. Phys.
28
,
403
414
(
1995
).
15.
Y. N.
Demkov
,
P. B.
Kurasov
, and
V. N.
Ostrovsky
, “
Doubly periodical in time and energy exactly soluble system with two interacting systems of states
,”
J. Phys. A. Math. Gen.
28
,
4361
4380
(
1995
).
16.
H.
Benisty
,
N.
Piskunov
,
P. K.
Kashkarov
, and
O.
Khayam
, “
Crossing of manifolds leads to flat dispersion: Blazed Littrow waveguides
,”
Phys. Rev. A
84
,
063825
(
2011
).
17.
H.
Kurt
,
H.
Benisty
,
T.
Melo
,
O.
Khayam
, and
C.
Cambournac
, “
Slow-light regime and critical coupling in highly multimode corrugated waveguides
,”
J. Opt. Soc. Am. B
25
,
C1
C14
(
2008
).
18.
H.
Benisty
,
O.
Khayam
, and
C.
Cambournac
, “
Emission control in broad periodic waveguides and critical coupling
,”
Photon. Nanostruct. Fundam. Appl.
8
,
210
217
(
2010
).
19.
C. T.
Martínez-Martínez
,
J. A.
Méndez-Bermúdez
,
Y.
Moreno
,
J. J.
Pineda-Pineda
, and
J. M.
Sigarreta
, “
Spectral and localization properties of random bipartite graphs
,”
Chaos Soliton Fract.: X
3
,
100021
(
2019
).
20.
M.
Sato
,
K.
Hasebe
,
K.
Esaki
, and
M.
Kohmoto
, “
Time-reversal symmetry in non-Hermitian systems
,”
Progr. Theor. Phys.
127
,
937
974
(
2012
).
21.
K.
Kawabata
,
K.
Shiozaki
,
M.
Ueda
, and
M.
Sato
, “
Symmetry and topology in non-Hermitian physics
,”
Phys. Rev. X
9
,
041015
(
2019
).
22.
A.
Mostafazadeh
, “
Time-dependent pseudo-Hermitian Hamiltonians and a hidden geometric aspect of quantum mechanics
,”
Entropy
22
,
471
(
2020
).
23.
A.
Nininahazwe
, “
Pseudo-Hermitian matrix exactly solvable Hamiltonian
,”
Open J. Microphys.
9
,
1
9
(
2019
).
24.
B. P.
Mandal
, “
Pseudo-Hermitian interaction between an oscillator and a spin-1/2 particle in the external magnetic field
,”
Mod. Phys. Lett. A
20
,
655
662
(
2005
).
25.
L.
Ge
, “
Symmetry-protected zero-mode laser with a tunable spatial profile
,”
Phys. Rev. A
95
,
023812
(
2017
).
26.
K.
Mochizuki
,
N.
Hatano
,
J.
Feinberg
, and
H.
Obuse
, “
Statistical properties of eigenvalues of the non-Hermitian Su–Schrieffer–Heeger model with random hopping terms
,”
Phys. Rev. E
102
,
012101
(
2020
).
27.
J.
Grilli
,
T.
Rogers
, and
S.
Allesina
, “
Modularity and stability in ecological communities
,”
Nat. Commun.
7
,
12031
(
2016
).
28.
R. A.
Brualdi
and
E. S.
Solheid
, “
On the spectral radius of connected graphs
,”
Publ. Inst. Math.(Beograd)
39
,
45
(
1986
).
29.
C. A.
Tracy
and
H.
Widom
, “Distribution functions for largest eigenvalues and their applications,” arXiv:math-ph/0210034v2 (2002).
30.
S. J.
Miller
,
T.
Novikoff
, and
A.
Sabelli
, “
The distribution of the largest non-trivial eigenvalues in families of random regular graphs
,”
Exp. Math.
17
,
231
244
(
2008
).
31.
L.
Böttcher
and
M. A.
Porter
, “Complex networks with complex weights,” arXiv:2212.06257 (2022).
You do not currently have access to this content.