The first step toward advancing our understanding of complex networks involves determining their connectivity structures from the time series data. These networks are often high-dimensional, and in practice, only a limited amount of data can be collected. In this work, we formulate the network inference task as a bilinear optimization problem and propose an iterative algorithm with sequential initialization to solve this bilinear program. We demonstrate the scalability of our approach to network size and its robustness against measurement noise, hyper-parameter variation, and deviations from the network model. Results across experimental and simulated datasets, comprising oscillatory, non-oscillatory, and chaotic dynamics, showcase the superior inference accuracy of our technique compared to existing methods.

1.
S. H.
Strogatz
, “
Exploring complex networks
,”
Nature
410
(
6825
),
268
276
(
2001
).
2.
M.
Lodi
,
F.
Della Rossa
,
F.
Sorrentino
, and
M.
Storace
, “
Analyzing synchronized clusters in neuron networks
,”
Sci. Rep.
10
(
1
),
16336
(
2020
).
3.
W.
Bomela
,
M.
Sebek
,
R.
Nagao
,
B.
Singhal
,
I. Z.
Kiss
, and
J.-S.
Li
, “
Finding influential nodes in networks using pinning control: Centrality measures confirmed with electrochemical oscillators
,”
Chaos
33
(
9
),
093128
(
2023
).
4.
J. H.
Abel
,
K.
Meeker
,
D.
Granados-Fuentes
,
P. C.
St. John
,
T. J.
Wang
,
B. B.
Bales
,
F. J.
Doyle
, III
,
E. D.
Herzog
, and
L. R.
Petzold
, “
Functional network inference of the suprachiasmatic nucleus
,”
Proc. Natl. Acad. Sci.
113
(
16
),
4512
4517
(
2016
).
5.
W.
Bomela
,
S.
Wang
,
C.-A.
Chou
, and
J.-S.
Li
, “
Real-time inference and detection of disruptive eeg networks for epileptic seizures
,”
Sci. Rep.
10
(
1
),
8653
(
2020
).
6.
Y.
Zuo
,
G.
Yu
,
M. G.
Tadesse
, and
H. W.
Ressom
, “
Biological network inference using low order partial correlation
,”
Methods
69
(
3
),
266
273
(
2014
).
7.
R.
Opgen-Rhein
and
K.
Strimmer
, “
From correlation to causation networks: A simple approximate learning algorithm and its application to high-dimensional plant gene expression data
,”
BMC Syst. Biol.
1
(
1
),
1
10
(
2007
).
8.
A. J.
Butte
and
I. S.
Kohane
, “Mutual information relevance networks: Functional genomic clustering using pairwise entropy measurements,” in Biocomputing 2000 (World Scientific, 1999), pp. 418–429.
9.
L.
Novelli
,
P.
Wollstadt
,
P.
Mediano
,
M.
Wibral
, and
J. T.
Lizier
, “
Large-scale directed network inference with multivariate transfer entropy and hierarchical statistical testing
,”
Network Neurosci.
3
(
3
),
827
847
(
2019
).
10.
T.
Schreiber
, “
Measuring information transfer
,”
Phys. Rev. Lett.
85
(
2
),
461
(
2000
).
11.
K. J.
Friston
, “
Functional and effective connectivity: A review
,”
Brain Connectivity
1
(
1
),
13
36
(
2011
).
12.
J.
Lu
,
B.
Dumitrascu
,
I. C.
McDowell
,
B.
Jo
,
A.
Barrera
,
L. K.
Hong
,
S. M.
Leichter
,
T. E.
Reddy
, and
B. E.
Engelhardt
, “
Causal network inference from gene transcriptional time-series response to glucocorticoids
,”
PLoS Comput. Biol.
17
(
1
),
e1008223
(
2021
).
13.
S. G.
Shandilya
and
M.
Timme
, “
Inferring network topology from complex dynamics
,”
New J. Phys.
13
(
1
),
013004
(
2011
).
14.
D.
Yu
,
M.
Righero
, and
L.
Kocarev
, “
Estimating topology of networks
,”
Phys. Rev. Lett.
97
(
18
),
188701
(
2006
).
15.
S.
Wang
,
E. D.
Herzog
,
I. Z.
Kiss
,
W. J.
Schwartz
,
G.
Bloch
,
M.
Sebek
,
D.
Granados-Fuentes
,
L.
Wang
, and
J.-S.
Li
, “
Inferring dynamic topology for decoding spatiotemporal structures in complex heterogeneous networks
,”
Proc. Natl. Acad. Sci.
115
(
37
),
9300
9305
(
2018
).
16.
B.
Singhal
,
M.
Vu
,
S.
Zeng
, and
J.-S.
Li
, “
Data-efficient inference of nonlinear oscillator networks
,”
IFAC-PapersOnLine
56
(
2
),
10829
10834
(
2023
).
17.
A.
Pikovsky
, “
Reconstruction of a random phase dynamics network from observations
,”
Phys. Lett. A
382
(
4
),
147
152
(
2018
).
18.
J.
Casadiego
,
M.
Nitzan
,
S.
Hallerberg
, and
M.
Timme
, “
Model-free inference of direct network interactions from nonlinear collective dynamics
,”
Nat. Commun.
8
(
1
),
1
10
(
2017
).
19.
M. J.
Panaggio
,
M.-V.
Ciocanel
,
L.
Lazarus
,
C. M.
Topaz
, and
B.
Xu
, “
Model reconstruction from temporal data for coupled oscillator networks
,”
Chaos
29
(
10
),
103116
(
2019
).
20.
S. L.
Brunton
,
J. L.
Proctor
, and
J. N.
Kutz
, “
Discovering governing equations from data by sparse identification of nonlinear dynamical systems
,”
Proc. Natl. Acad. Sci.
113
(
15
),
3932
3937
(
2016
).
21.
D.
Napoletani
and
T. D.
Sauer
, “
Reconstructing the topology of sparsely connected dynamical networks
,”
Phys. Rev. E
77
(
2
),
026103
(
2008
).
22.
I.
Topal
and
D.
Eroglu
, “
Reconstructing network dynamics of coupled discrete chaotic units from data
,”
Phys. Rev. Lett.
130
(
11
),
117401
(
2023
).
23.
D.
Eroglu
,
M.
Tanzi
,
S.
van Strien
, and
T.
Pereira
, “
Revealing dynamics, communities, and criticality from data
,”
Phys. Rev. X
10
(
2
),
021047
(
2020
).
24.
Y.
LeCun
,
Y.
Bengio
, and
G.
Hinton
, “
Deep learning
,”
Nature
521
(
7553
),
436
444
(
2015
).
25.
T.
Kipf
,
E.
Fetaya
,
K.-C.
Wang
,
M.
Welling
, and
R.
Zemel
, “Neural relational inference for interacting systems,” in International Conference on Machine Learning (PMLR, 2018), pp. 2688–2697.
26.
R.
Berner
,
T.
Gross
,
C.
Kuehn
,
J.
Kurths
, and
S.
Yanchuk
, “Adaptive dynamical networks,” arXiv:2304.05652 (2023).
27.
E. M.
Izhikevich
,
Dynamical Systems in Neuroscience
(
MIT Press
,
2007
).
28.
A. E.
Motter
,
S. A.
Myers
,
M.
Anghel
, and
T.
Nishikawa
, “
Spontaneous synchrony in power-grid networks
,”
Nat. Phys.
9
(
3
),
191
197
(
2013
).
29.
A. T.
Winfree
,
The Geometry of Biological Time
(
Springer
,
1980
), Vol. 2.
30.
C.
Canuto
,
M. Y.
Hussaini
,
A.
Quarteroni
, and
T. A.
Zang
,
Spectral Methods: Fundamentals in Single Domains
(
Springer Science & Business Media
,
2007
).
31.
T.
Sauer
,
Numerical Analysis
(
Addison-Wesley Publishing Company
,
2011
).
32.
L.
Ljung
, “
Perspectives on system identification
,”
Annu. Rev. Control
34
(
1
),
1
12
(
2010
).
33.
T.-T.
Gao
and
G.
Yan
, “
Data-driven inference of complex system dynamics: A mini-review
,”
Europhys. Lett.
142
(
1
),
11001
(
2023
).
34.
S.
Boyd
and
L.
Vandenberghe
,
Introduction to Applied Linear Algebra: Vectors, Matrices, and Least Squares
(
Cambridge University Press
,
2018
).
35.
C. L.
Lawson
and
R. J.
Hanson
,
Solving Least Squares Problems
(
SIAM
,
1995
).
36.
S.
Mirzaei
,
M. S.
Anwar
,
F.
Parastesh
,
S.
Jafari
, and
D.
Ghosh
, “
Synchronization in repulsively coupled oscillators
,”
Phys. Rev. E
107
(
1
),
014201
(
2023
).
37.
G. B.
Folland
,
Real Analysis: Modern Techniques and Their Applications
(
John Wiley & Sons
,
1999
), Vol. 40.
38.
E.-W.
Bai
and
D.
Li
, “
Convergence of the iterative hammerstein system identification algorithm
,”
IEEE Trans. Autom. Control
49
(
11
),
1929
1940
(
2004
).
39.
S. L.
Brunton
and
J. N.
Kutz
,
Data-Driven Science and Engineering: Machine Learning, Dynamical Systems, and Control
(
Cambridge University Press
,
2022
).
40.
R.
Tibshirani
, “
Regression shrinkage and selection via the lasso
,”
J. R. Stat. Soc. B: Stat. Methodol.
58
(
1
),
267
288
(
1996
).
41.
J. F.
Geweke
, “
Measures of conditional linear dependence and feedback between time series
,”
J. Am. Stat. Assoc.
79
(
388
),
907
915
(
1984
).
42.
L.
Barnett
and
A. K.
Seth
, “
The mvgc multivariate granger causality toolbox: A new approach to granger-causal inference
,”
J. Neurosci. Methods
223
,
50
68
(
2014
).
43.
B. J.
Lünsmann
,
C.
Kirst
, and
M.
Timme
, “
Transition to reconstructibility in weakly coupled networks
,”
PLoS One
12
(
10
),
e0186624
(
2017
).
44.
D. J.
Watts
and
S. H.
Strogatz
, “
Collective dynamics of a small-world networks
,”
Nature
393
(
6684
),
440
(
1998
).
45.
R.
Albert
and
A.-L.
Barabási
, “
Statistical mechanics of complex networks
,”
Rev. Mod. Phys.
74
(
1
),
47
(
2002
).
46.
A.
Hagberg
,
P.
Swart
, and
D. S.
Chult
, “Exploring network structure, dynamics, and function using networkx,” Technical report, Los Alamos National Laboratory (LANL), Los Alamos, NM, 2008.
47.
G.
Karlebach
and
R.
Shamir
, “
Modelling and analysis of gene regulatory networks
,”
Nat. Rev. Mol. Cell Biol.
9
(
10
),
770
780
(
2008
).
48.
O. E.
Rössler
, “
An equation for continuous chaos
,”
Phys. Lett. A
57
(
5
),
397
398
(
1976
).
49.
D.
Hansel
,
G.
Mato
, and
C.
Meunier
, “
Phase dynamics for weakly coupled Hodgkin-Huxley neurons
,”
Europhys. Lett.
23
(
5
),
367
(
1993
).
50.
T.
Hastie
,
R.
Tibshirani
,
J. H.
Friedman
, and
J. H.
Friedman
,
The Elements of Statistical Learning: Data Mining, Inference, and Prediction
(
Springer
,
2009
), Vol. 2.
51.
V.
Vera-Ávila
,
R.
Sevilla-Escoboza
,
A.
Lozano-Sánchez
,
R.
Rivera-Durón
, and
J. M.
Buldú
, “
Experimental datasets of networks of nonlinear oscillators: Structure and dynamics during the path to synchronization
,”
Data Brief
28
,
105012
(
2020
).
52.
M. G.
Rosenblum
,
A. S.
Pikovsky
, and
J.
Kurths
, “
Phase synchronization of chaotic oscillators
,”
Phys. Rev. Lett.
76
(
11
),
1804
(
1996
).
53.
N.
Mitrou
,
A.
Laurin
,
T.
Dick
, and
J.
Inskip
, “
A peak detection method for identifying phase in physiological signals
,”
Biomed. Signal Process. Control
31
,
452
462
(
2017
).
54.
A.
Banerjee
,
J.
Pathak
,
R.
Roy
,
J. G.
Restrepo
, and
E.
Ott
, “
Using machine learning to assess short term causal dependence and infer network links
,”
Chaos
29
,
121104
(
2019
).
You do not currently have access to this content.