The basin entropy is a measure that quantifies, in a system that has two or more attractors, the predictability of a final state, as a function of the initial conditions. While the basin entropy has been demonstrated on a variety of multistable dynamical systems, to the best of our knowledge, it has not yet been tested in systems with a time delay, whose phase space is infinite dimensional because the initial conditions are functions defined in a time interval [ τ , 0 ], where τ is the delay time. Here, we consider a simple time-delayed system consisting of a bistable system with a linear delayed feedback term. We show that the basin entropy captures relevant properties of the basins of attraction of the two coexisting attractors. Moreover, we show that the basin entropy can give an indication of the proximity of a Hopf bifurcation, but fails to capture the proximity of a pitchfork bifurcation. The Hopf bifurcation is detected because before the fixed points become unstable, a oscillatory, limit-cycle behavior appears that coexists with the fixed points. The new limit cycle modifies the structure of the basins of attraction, and this change is captured by basin entropy that reaches a maximum before the Hopf bifurcation. In contrast, the pitchfork bifurcation is not detected because the basins of attraction do not change as the bifurcation is approached. Our results suggest that the basin entropy can yield useful insights into the long-term predictability of time-delayed systems, which often have coexisting attractors.

1.
M. A. F.
Sanjuán
, “
Artificial intelligence, chaos, prediction and understanding in science
,”
Int. J. Bifurcation Chaos
31
,
2150173
(
2021
).
2.
H. W.
Fan
,
J. J.
Jiang
,
C.
Zhang
,
X. G.
Wang
, and
Y. C.
Lai
, “
Long-term prediction of chaotic systems with machine learning
,”
Phys. Rev. Res.
2
,
012080
(
2020
).
3.
M.
Gelbrecht
,
N.
Boers
, and
J.
Kurths
, “
Neural partial differential equations for chaotic systems
,”
New J. Phys.
23
,
043005
(
2021
).
4.
W. A. S.
Barbosa
and
D. J.
Gauthier
, “
Learning spatiotemporal chaos using next-generation reservoir computing
,”
Chaos
32
,
093137
(
2022
).
5.
R.
Stenger
,
S.
Herzog
,
I.
Kottlarz
,
B.
Ruechardt
,
S.
Luther
,
F.
Woergoetter
, and
U.
Parlitz
, “
Reconstructing in-depth activity for chaotic 3D spatiotemporal excitable media models based on surface data
,”
Chaos
33
,
013134
(
2022
).
6.
C.
Hens
,
S. K.
Dana
, and
U.
Feudel
, “
Extreme multistability: Attractor manipulation and robustness
,”
Chaos
25
,
053112
(
2015
).
7.
P.
Louodop
,
R.
Tchitnga
,
F. F.
Fagundes
,
M.
Kountcho
,
V. K.
Tamba
,
C. L.
Pando
, and
H. A.
Cerdeira
, “
Extreme multistability in a Josephson-junction-based circuit
,”
Phys. Rev. E
99
,
042208
(
2019
).
8.
Z.
Su
,
J.
Kurths
,
Y. R.
Liu
, and
S.
Yanchuk
, “
Extreme multistability in symmetrically coupled clocks
,”
Chaos
33
,
083157
(
2023
).
9.
T.
Erneux
,
Applied Delay Differential Equations
(
Springer
,
2009
).
10.
H.
Wernecke
,
B.
Sándor
, and
C.
Gros
, “
Chaos in time delay systems, an educational review
,”
Phys. Rep.
824
,
1
40
(
2019
).
11.
A.
Otto
,
W.
Just
, and
G.
Radons
, “
Nonlinear dynamics of delay systems: An overview
,”
Phil. Trans. R. Soc. A
377
,
20180389
(
2019
).
12.
D.
Farmer
, “
Chaotic attractors of an infinite-dimensional dynamical system
,”
Physica D
4
,
366
393
(
1982
).
13.
F.
Arecchi
,
G.
Giacomelli
,
A.
Lapucci
, and
R.
Meucci
, “
Two-dimensional representation of a delayed dynamical system
,”
Phys. Rev. A
45
,
R4225
(
1992
).
14.
C.
Masoller
, “
Spatiotemporal dynamics in the coherence collapsed regime of semiconductor lasers with optical feedback
,”
Chaos
7
,
455
462
(
1997
).
15.
S.
Yanchuk
and
G.
Giacomelli
, “
Spatio-temporal phenomena in complex systems with time delays
,”
J. Phys. A
50
,
103001
(
2017
).
16.
C.
Quintero-Quiroz
,
M. C.
Torrent
, and
C.
Masoller
, “
State space reconstruction of spatially extended systems and of time delayed systems from the time series of a scalar variable
,”
Chaos
28
,
075504
(
2018
).
17.
L.
Munsberg
,
J.
Javaloyes
, and
S. V.
Gurevich
, “
Topological localized states in the time delayed adler model: Bifurcation analysis and interaction law
,”
Chaos
30
,
063137
(
2020
).
18.
C.
Masoller
, “
Coexistence of attractors in a laser diode with optical feedback from a large external cavity
,”
Phys. Rev. A
50
,
2569
2578
(
1994
).
19.
J.
Foss
,
A.
Longtin
,
B.
Mensour
, and
J.
Milton
, “
Multistability and delayed recurrent loops
,”
Phys. Rev. Lett.
76
,
708
(
1997
).
20.
P.
Amil
,
C.
Cabeza
, and
A. C.
Marti
, “
Exact discrete-time implementation of the Mackey–Glass delayed model
,”
IEEE Trans. Circuits Syst. II: Express Briefs
62
,
681
685
(
2015
).
21.
S.
Camargo
,
R. L.
Viana
, and
C.
Anteneodo
, “
Intermingled basins in coupled Lorenz systems
,”
Phys. Rev. E
85
,
036207
(
2012
).
22.
P.
Amil
,
C.
Cabeza
,
C.
Masoller
, and
A. C.
Martí
, “
Organization and identification of solutions in the time-delayed Mackey-Glass model
,”
Chaos
25
,
043112
(
2015
).
23.
S. R.
Ujjwal
,
N.
Punetha
,
R.
Ramaswamy
,
M.
Agrawal
, and
A.
Prasad
, “
Driving-induced multistability in coupled chaotic oscillators: Symmetries and riddled basins
,”
Chaos
26
,
063111
(
2016
).
24.
A.
Saha
and
U.
Feudel
, “
Riddled basins of attraction in systems exhibiting extreme events
,”
Chaos
28
,
033610
(
2018
).
25.
T. T.
Wontchui
,
M. E.
Sone
,
S. R.
Ujjwal
,
J. Y.
Effa
,
H. P. E.
Fouda
, and
R.
Ramaswamy
, “
Intermingled attractors in an asymmetrically driven modified chua oscillator
,”
Chaos
32
,
013106
(
2022
).
26.
A.
Daza
,
A.
Wagemakers
,
B.
Georgeot
,
D.
Guéry-Odelin
, and
M. A. F.
Sanjuán
, “
Basin entropy: A new tool to analyze uncertainty in dynamical systems
,”
Sci. Rep.
6
,
1
10
(
2016
).
27.
A.
Daza
,
B.
Georgeot
,
D.
Guery-Odelin
,
A.
Wagemakers
, and
M. A. F.
Sanjuan
, “
Chaotic dynamics and fractal structures in experiments with cold atoms
,”
Phys. Rev. A
95
,
013629
(
2017
).
28.
A.
Wagemakers
,
A.
Daza
, and
M. A. F.
Sanjuán
, “
Using the basin entropy to explore bifurcations
,”
Chaos, Solitons Fractals
175
,
113963
(
2023
).
29.
M.
Scheffer
,
J.
Bascompte
,
W. A.
Brock
,
V.
Brovkin
,
S. R.
Carpenter
,
V.
Dakos
,
H.
Held
,
E. H.
Van Nes
,
M.
Rietkerk
, and
G.
Sugihara
, “
Early-warning signals for critical transitions
,”
Nature
461
,
53
59
(
2009
).
30.
V.
Dakos
,
E. H.
van Nes
,
P.
D’Odorico
, and
M.
Scheffer
, “
Robustness of variance and autocorrelation as indicators of critical slowing down
,”
Ecology
93
,
264
271
(
2012
).
31.
G.
Tirabassi
and
C.
Masoller
, “
Entropy-based early detection of critical transitions in spatial vegetation fields
,”
PNAS
120
,
e2215667120
(
2023
).
32.
R. M.
Rvan Westen
,
M.
Kliphuis
, and
H. A.
Dijkstra
, “
Physics-based early warning signal shows that amoc is on tipping course
,”
Sci. Adv.
10
,
eadk1189
(
2024
).
33.
L. S.
Tsimring
and
A.
Pikovsky
, “
Noise-induced dynamics in bistable systems with delay
,”
Phys. Rev. Lett.
87
,
250602
(
2001
).
34.
M.
Sciamanna
,
K.
Panajotov
,
H.
Thienpont
,
I.
Veretennicoff
,
P.
Mégret
, and
M.
Blondel
, “
Optical feedback induces polarization mode hopping in vertical-cavity surface-emitting lasers
,”
Opt. Lett.
28
,
1543
1545
(
2003
).
35.
B. F.
Redmond
,
V. G.
LeBlanc
, and
A.
Longtin
, “
Bifurcation analysis of a class of first-order nonlinear delay-differential equations with reflectional symmetry
,”
Physica D
166
,
131
146
(
2002
).
36.
M. C.
Mackey
and
L.
Glass
, “
Oscillation and chaos in physiological control systems
,”
Science
197
,
287
289
(
1977
).
37.
A.
Daza
,
A.
Wagemakers
, and
M. A. F.
Sanjuán
, “
Unpredictability and basin entropy
,”
Europhys. Lett.
141
,
43001
(
2023
).
You do not currently have access to this content.