A valuable step in the modeling of multiscale dynamical systems in fields such as computational chemistry, biology, and materials science is the representative sampling of the phase space over long time scales of interest; this task is not, however, without challenges. For example, the long term behavior of a system with many degrees of freedom often cannot be efficiently computationally explored by direct dynamical simulation; such systems can often become trapped in local free energy minima. In the study of physics-based multi-time-scale dynamical systems, techniques have been developed for enhancing sampling in order to accelerate exploration beyond free energy barriers. On the other hand, in the field of machine learning (ML), a generic goal of generative models is to sample from a target density, after training on empirical samples from this density. Score-based generative models (SGMs) have demonstrated state-of-the-art capabilities in generating plausible data from target training distributions. Conditional implementations of such generative models have been shown to exhibit significant parallels with long-established—and physics-based—solutions to enhanced sampling. These physics-based methods can then be enhanced through coupling with the ML generative models, complementing the strengths and mitigating the weaknesses of each technique. In this work, we show that SGMs can be used in such a coupling framework to improve sampling in multiscale dynamical systems.

1.
J.
Hénin
,
T.
Lelièvre
,
M. R.
Shirts
,
O.
Valsson
, and
L.
Delemotte
, “
Enhanced sampling methods for molecular dynamics simulations [article v1.0]
,”
Living J. Comput. Mol. Sci.
4
(
1
),
1583
(
2022
).
2.
K.
Pearson
, “LIII. On lines and planes of closest fit to systems of points in space,”
London, Edinburgh Dublin Philos. Mag. J. Sci.
2
(11), 559–572 (1901).
3.
M. A.
Kramer
, “
Nonlinear principal component analysis using autoassociative neural networks
,”
AIChE J.
37
(
2
),
233
243
(
1991
).
4.
J. B.
Tenenbaum
,
V.
de Silva
, and
J. C.
Langford
, “
A global geometric framework for nonlinear dimensionality reduction
,”
Science
290
(
5500
),
2319
2323
(
2000
).
5.
S. T.
Roweis
and
L. K.
Saul
, “
Nonlinear dimensionality reduction by locally linear embedding
,”
Science
290
(
5500
),
2323
2326
(
2000
).
6.
R. R.
Coifman
and
S.
Lafon
, “
Diffusion maps
,”
Appl. Comput. Harmonic Anal.
21
(
1
),
5
30
(
2006
).
7.
C.
William Gear
,
J. M.
Hyman
,
P. G.
Kevrekidid
,
I. G.
Kevrekidis
,
O.
Runborg
, and
C.
Theodoropoulos
, “
Equation-free, coarse-grained multiscale computation: Enabling microscopic simulators to perform system-level analysis
,”
Commun. Math. Sci.
1
(
4
),
715
762
(
2003
).
8.
I. G.
Kevrekidis
and
G.
Samaey
, “
Equation-free multiscale computation: Algorithms and applications
,”
Annu. Rev. Phys. Chem.
60
(
1
),
321
344
(
2009
).
9.
G. M.
Torrie
and
J. P.
Valleau
, “
Nonphysical sampling distributions in Monte Carlo free-energy estimation: Umbrella sampling
,”
J. Comput. Phys.
23
(
2
),
187
199
(
1977
).
10.
M. E.
Sharp
,
F. X.
Vázquez
,
J. W.
Wagner
,
T.
Dannenhoffer-Lafage
, and
G. A.
Voth
, “
Multiconfigurational coarse-grained molecular dynamics
,”
J. Chem. Theory Comput.
15
(
5
),
3306
3315
(
2019
), PMID: 30897328.
11.
M.
Lelimousin
,
V.
Limongelli
, and
M. S. P.
Sansom
, “
Conformational changes in the epidermal growth factor receptor: Role of the transmembrane domain investigated by coarse-grained metadynamics free energy calculations
,”
J. Am. Chem. Soc.
138
(
33
),
10611
10622
(
2016
), PMID: 27459426.
12.
I. J.
Goodfellow
,
J.
Pouget-Abadie
,
M.
Mirza
,
B.
Xu
,
D.
Warde-Farley
,
S.
Ozair
,
A.
Courville
, and
Y.
Bengio
, “Generative adversarial networks,” arXiv:1406.2661[cs,stat], June (2014).
13.
D. P.
Kingma
and
M.
Welling
, “Auto-encoding variational Bayes,” arXiv:1312.6114 (2013).
14.
M.
Mirza
and
S.
Osindero
, “Conditional generative adversarial nets,” arXiv:1411.1784[cs,stat], November (2014).
15.
H.
Sidky
,
W.
Chen
, and
A. L.
Ferguson
, “
Molecular latent space simulators
,”
Chem. Sci.
11
,
9459
9467
(
2020
).
16.
Z.
Belkacemi
,
P.
Gkeka
,
T.
Lelièvre
, and
G.
Stoltz
, “
Chasing collective variables using autoencoders and biased trajectories
,”
J. Chem. Theory Comput.
18
(
1
),
59
78
(
2022
).
17.
Y.
Song
,
J.
Sohl-Dickstein
,
D. P.
Kingma
,
A.
Kumar
,
S.
Ermon
, and
B.
Poole
, “Score-based generative modeling through stochastic differential equations,” arXiv:2011.13456 (2020).
18.
Y.
Song
and
S.
Ermon
, “Improved techniques for training score-based generative models,” arXiv:2006.09011 (2020).
19.
E. R.
Crabtree
,
J. M.
Bello-Rivas
,
A. L.
Ferguson
, and
I. G.
Kevrekidis
, “
GANs and closures: Micro-macro consistency in multiscale modeling
,”
Multiscale Model. Simul.
21
(
3
),
1122
1146
(
2023
).
20.
G.
Maruyama
, “
Continuous Markov processes and stochastic equations
,”
Rend. Circolo Mat. Palermo
4
(
1
),
48
90
(
1955
).
21.
Y.
Song
and
S.
Ermon
, “Generative modeling by estimating gradients of the data distribution,” arXiv:1907.05600 (2019).
22.
P.
Vincent
, “
A connection between score matching and denoising autoencoders
,”
Neural Comput.
23
(
7
),
1661
1674
(
2011
).
23.
Y.
Tashiro
,
J.
Song
,
Y.
Song
, and
S.
Ermon
, “CSDI: Conditional score-based diffusion models for probabilistic time series imputation,” arXiv:2107.03502 (2021).
24.
C.
Saharia
,
J.
Ho
,
W.
Chan
,
T.
Salimans
,
D. J.
Fleet
, and
M.
Norouzi
, “Image super-resolution via iterative refinement,” arXiv:2104.07636 (2021).
25.
G.
Batzolis
,
J.
Stanczuk
,
C.-B.
Schönlieb
, and
C.
Etmann
, “Conditional image generation with score-based diffusion models,” arXiv:2111.13606 (2021).
26.
T.
Karras
,
M.
Aittala
,
T.
Aila
, and
S.
Laine
, “Elucidating the design space of diffusion-based generative models,” arXiv:2206.00364 (2022).
27.
S.
Kumar
,
J. M.
Rosenberg
,
D.
Bouzida
,
R. H.
Swendsen
, and
P. A.
Kollman
, “
The weighted histogram analysis method for free-energy calculations on biomolecules. I. The method
,”
J. Comput. Chem.
13
(
8
),
1011
1021
(
1992
).
28.
M. R.
Shirts
and
J. D.
Chodera
, “
Statistically optimal analysis of samples from multiple equilibrium states
,”
J. Chem. Phys.
129
(
12
),
124105
(
2008
).
29.
P.
Eastman
,
J.
Swails
,
J. D.
Chodera
,
R. T.
McGibbon
,
Y.
Zhao
,
K. A.
Beauchamp
,
L.-P.
Wang
,
A. C.
Simmonett
,
M. P.
Harrigan
,
C. D.
Stern
,
R. P.
Wiewiora
,
B. R.
Brooks
, and
V. S.
Pande
, “
OpenMM 7: Rapid development of high performance algorithms for molecular dynamics
,”
PLoS Comput. Biol.
13
(
7
),
e1005659
(
2017
).
30.
D.
Case
,
V.
Babin
,
J.
Berryman
,
R.
Betz
,
Q.
Cai
,
D.
Cerutti
,
T.
Cheatham
,
T.
Darden
,
R.
Duke
,
H.
Gohlke
,
A.
Götz
,
S.
Gusarov
,
N.
Homeyer
,
P.
Janowski
,
J.
Kaus
,
I.
Kolossváry
,
A.
Kovalenko
,
T.-S.
Lee
,
S.
Legrand
, and
P.
Kollman
, AMBER 14, University of California, San Francisco, 2014.
31.
J.
Mongan
,
C.
Simmerling
,
J.
Andrew McCammon
,
D. A.
Case
, and
A.
Onufriev
, “
Generalized born model with a simple, robust molecular volume correction
,”
J. Chem. Theory Comput.
3
(
1
),
156
169
(
2007
).
32.
G.
Corso
,
H.
Stärk
,
B.
Jing
,
R.
Barzilay
, and
T.
Jaakkola
, “DiffDock: Diffusion steps, twists, and turns for molecular docking,” arXiv:2210.01776 (2023).
33.
D.
Gnaneshwar
,
B.
Ramsundar
,
D.
Gandhi
,
R.
Kurchin
, and
V.
Viswanathan
, “Score-based generative models for molecule generation,” arXiv:2203.04698 (2022).
34.
E. Crabree (2024). “Crabtree SGM assisted sampling,” GitHub. https://github.com/ecrab/SGM_assisted_sampling
You do not currently have access to this content.