We tackle the quantification of synchrony in globally coupled populations. Furthermore, we treat the problem of incomplete observations when the population mean field is unavailable, but only a small subset of units is observed. We introduce a new order parameter based on the integral of the squared autocorrelation function and demonstrate its efficiency for quantifying synchrony via monitoring general observables, regardless of whether the oscillations can be characterized in terms of the phases. Under condition of a significant irregularity in the dynamics of the coupled units, this order parameter provides a unified description of synchrony in populations of units of various complexities. The main examples include noise-induced oscillations, coupled strongly chaotic systems, and noisy periodic oscillations. Furthermore, we explore how this parameter works for the standard Kuramoto model of coupled regular-phase oscillators. The most significant advantage of our approach is its ability to infer and quantify synchrony from the observation of a small percentage of the units and even from a single unit, provided the observations are sufficiently long.

1.
A. T.
Winfree
, “
Biological rhythms and the behavior of populations of coupled oscillators
,”
J. Theor. Biol.
16
,
15
42
(
1967
).
2.
Y.
Kuramoto
, “Self-entrainment of a population of coupled nonlinear oscillators,” in International Symposium on Mathematical Problems in Theoretical Physics, edited by H. Araki, Lecture Notes Phys., v. 39 (Springer, New York, 1975), p. 420.
3.
S. H.
Strogatz
and
I.
Stewart
, “
Coupled oscillators and biological synchronization
,”
Sci. Am.
269
(6),
102
109
(
1993
).
4.
J. A.
Acebrón
,
L. L.
Bonilla
,
C. J.
Pérez Vicente
,
F.
Ritort
, and
R.
Spigler
, “
The Kuramoto model: A simple paradigm for synchronization phenomena
,”
Rev. Mod. Phys.
77
,
137
185
(
2005
).
5.
A.
Pikovsky
,
M.
Rosenblum
, and
J.
Kurths
,
Synchronization. A Universal Concept in Nonlinear Sciences
(
Cambridge University Press
,
Cambridge
,
2001
).
6.
B.
Eckhardt
,
E.
Ott
,
S. H.
Strogatz
,
D. M.
Abrams
, and
A.
McRobie
, “
Modeling walker synchronization on the Millennium Bridge
,”
Phys. Rev. E
75
,
021110
(
2007
).
7.
L.
Glass
and
M. C.
Mackey
,
From Clocks to Chaos: The Rhythms of Life
(
Princeton University Press
,
Princeton, NJ
,
1988
).
8.
G.
Buzsáki
,
Rhythms of the Brain
(
Oxford UP
,
Oxford
,
2006
).
9.
K.
Lehnertz
, “
Epilepsy and nonlinear dynamics
,”
J. Biol. Phys.
34
,
253
266
(
2008
).
10.
A.
Daffertshofer
and
B.
Pietras
, “
Phase synchronization in neural systems
,” in
Encyclopedia of Complexity and Systems Science
edited by R. Meyers (Springer, Berlin, Heidelberg, 2020).
11.
I.
Ginzburg
and
H.
Sompolinsky
, “
Theory of correlations in stochastic neural networks
,”
Phys. Rev. E
50
,
3171
(
1994
).
12.
D.
Hansel
and
H.
Sompolinsky
, “
Chaos and synchrony in a model of a hypercolumn in visual cortex
,”
J. Comput. Neurosci.
3
,
7
34
(
1996
).
13.
A.
Pikovsky
,
M.
Rosenblum
, and
J.
Kurths
, “
Synchronization in a population of globally coupled chaotic oscillators
,”
Europhys. Lett.
34
,
165
170
(
1996
).
14.
D.
Golomb
,
D.
Hansel
, and
G.
Mato
, “Mechanisms of synchrony of neural activity in large networks,” in Handbook of Biological Physics (Elsevier, 2001), Vol. 4, pp. 887–968.
15.
M.
Kapitaniak
,
K.
Czolczyński
,
P.
Perlikowski
,
A.
Stefański
, and
T.
Kapitaniak
, “
Synchronization of clocks
,”
Phys. Rep.
517
,
1
69
(
2012
).
16.
K.
Czolczyński
,
P.
Perlikowski
,
A.
Stefański
, and
T.
Kapitaniak
, “
Synchronization of the self-excited pendula suspended on the vertically displacing beam
,”
Commun. Nonlinear Sci. Numer. Simul.
18
,
386
400
(
2013
).
17.
K.
Wiesenfeld
,
P.
Colet
, and
S.
Strogatz
, “
Frequency locking in Josephson arrays: Connection with the Kuramoto model
,”
Phys. Rev. E
57
,
1563
1569
(
1998
).
18.
A. A.
Temirbayev
,
Z. Z.
Zhanabaev
,
S. B.
Tarasov
,
V. I.
Ponomarenko
, and
M.
Rosenblum
, “
Experiments on oscillator ensembles with global nonlinear coupling
,”
Phys. Rev. E
85
,
015204
(
2012
).
19.
M.
Wenzel
and
J. P.
Hamm
, “
Identification and quantification of neuronal ensembles in optical imaging experiments
,”
J. Neurosci. Methods
351
,
109046
(
2021
).
20.
In this paper, we assume ergodicity and stationarity, so practically the averaging is performed over time; an additional averaging over realizations of the dynamics might be helpful if a relatively short time series is available.
21.
L.-P.
Chaintron
and
A.
Diez
, “
Propagation of chaos: A review of models, methods and applications. I. Models and methods
,”
Kinetic Relat. Models
15
,
895
(
2022
).
22.
L.-P.
Chaintron
and
A.
Diez
, “
Propagation of chaos: A review of models, methods and applications. II. Applications
,”
Kinetic Relat. Models
15
,
1017
(
2022
).
23.
In the calculation of the ACF, it is usual to assume that the regular component possesses a random phase shift.
24.
N.
Wiener
, “
Generalized harmonic analysis
,”
Acta Math.
55
,
117
258
(
1930
).
25.
I.
Kornfeld
,
Y. G.
Sinai
, and
S.
Fomin
, Ergodic Theory, Nauka, Moscow, 1980; English transl. (Springer, New York, 1982).
26.
M.
Queffélec
, Substitution Dynamical Systems-Spectral Analysis, Lecture Notes in Mathematics Vol. 1294 (Springer, 2010).
27.
S. V.
Kijashko
,
A. S.
Pikovsky
, and
M. I.
Rabinovich
, “
A radio–frequency generator with stochastic behavior
,”
Sov. J. Commun. Technol. Electronics
25
,
74
79
(
1980
).
28.
B.
Duchesne
,
C. W.
Fischer
,
C. G.
Gray
, and
K. R.
Jeffrey
, “
Chaos in the motion of an inverted pendulum: An undergraduate laboratory experiment
,”
Am. J. Phys.
59
,
987
992
(
1991
), https://pubs.aip.org/aapt/ajp/article-pdf/59/11/987/11989165/987_1_online.pdf.
29.
P. W.
Roesky
,
S. I.
Doumbouya
, and
F. W.
Schneider
, “
Chaos induced by delayed feedback
,”
J. Phys. Chem.
97
,
398
402
(
1993
).
30.
J.
Argyris
,
G.
Faust
, and
M.
Haase
,
An Exploration of Chaos
(
North-Holland
,
Amsterdam
,
1994
).
31.
H.
Daido
, “
Intrinsic fluctuations and a phase transition in a class of large population of interacting oscillators
,”
J. Stat. Phys.
60
,
753
800
(
1990
).
32.
A.
Pikovsky
and
S.
Ruffo
, “
Finite-size effects in a population of interacting oscillators
,”
Phys. Rev. E
59
,
1633
1636
(
1999
).
33.
L.
Bertini
,
G.
Giacomin
, and
C.
Poquet
, “
Synchronization and random long time dynamics for mean-field plane rotators
,”
Probab. Theory Relat. Fields
160
,
593
653
(
2014
).
34.
H.
Hong
,
H.
Chaté
,
L.-H.
Tang
, and
H.
Park
, “
Finite-size scaling, dynamic fluctuations, and hyperscaling relation in the Kuramoto model
,”
Phys. Rev. E
92
,
022122
(
2015
).
35.
G. A.
Gottwald
, “
Finite-size effects in a stochastic Kuramoto model
,”
Chaos
27
,
101103
(
2017
).
36.
F.
Peter
and
A.
Pikovsky
, “
Transition to collective oscillations in finite Kuramoto ensembles
,”
Phys. Rev. E
97
,
032310
(
2018
).
37.
W.
Yue
and
G. A.
Gottwald
, “A stochastic approximation for the finite-size Kuramoto-Sakaguchi model,” arXiv:2310.20048 [nlin.AO] (2023).
38.
V.
Hakim
and
W.-J.
Rappel
, “
Dynamics of the globally coupled complex Ginzburg-Landau equation
,”
Phys. Rev. A
46
,
R7347
(
1992
).
39.
N.
Nakagawa
and
Y.
Kuramoto
, “
From collective oscillations to collective chaos in a globally coupled oscillator system
,”
Physica D
75
,
74
80
(
1994
).
40.
M.-L.
Chabanol
,
V.
Hakim
, and
W.-J.
Rappel
, “
Collective chaos and noise in the globally coupled complex Ginzburg-Landau equation
,”
Physica D
103
,
273
293
(
1997
).
41.
W. L.
Ku
,
M.
Girvan
, and
E.
Ott
, “
Dynamical transitions in large systems of mean field-coupled Landau-Stuart oscillators: Extensive chaos and cluster states
,”
Chaos
25
,
123122
(
2015
).
42.
P.
Clusella
and
A.
Politi
, “
Between phase and amplitude oscillators
,”
Phys. Rev. E
99
,
062201
(
2019
).
43.
I.
León
and
D.
Pazó
, “
Enlarged Kuramoto model: Secondary instability and transition to collective chaos
,”
Phys. Rev. E
105
,
L042201
(
2022
).
44.
S.
Olmi
,
A.
Politi
, and
A.
Torcini
, “
Collective chaos in pulse-coupled neural networks
,”
Europhys. Lett.
92
,
60007
(
2011
).
45.
D.
Pazó
and
E.
Montbrió
, “
From quasiperiodic partial synchronization to collective chaos in populations of inhibitory neurons with delay
,”
Phys. Rev. Lett.
116
,
238101
(
2016
).
46.
I.
Ratas
and
K.
Pyragas
, “
Macroscopic oscillations of a quadratic integrate-and-fire neuron network with global distributed-delay coupling
,”
Phys. Rev. E
98
,
052224
(
2018
).
47.
W. H.
Press
,
S. T.
Teukolsky
,
W. T.
Vetterling
, and
B. P.
Flannery
,
Numerical Recipes in C: The Art of Scientific Computing
, 2nd ed. (
Cambridge University Press
,
Cambridge
,
1992
).
48.
V. V.
Klinshov
,
S. Y.
Kirillov
,
V. I.
Nekorkin
, and
M.
Wolfrum
, “
Noise-induced dynamical regimes in a system of globally coupled excitable units
,”
Chaos
31
,
083103
(
2021
).
49.
Notice that the normalization of the noise strength differs from that used in Eq. (15).
50.
M.
Rosenblum
and
A.
Pikovsky
, “
Two types of quasiperiodic partial synchrony in oscillator ensembles
,”
Phys. Rev. E
92
,
012919
(
2015
).
51.
M.
Carlu
,
F.
Ginelli
, and
A.
Politi
, “
Origin and scaling of chaos in weakly coupled phase oscillators
,”
Phys. Rev. E
97
,
012203
(
2018
).
52.
O. V.
Popovych
,
Y. L.
Maistrenko
, and
P. A.
Tass
, “
Phase chaos in coupled oscillators
,”
Phys. Rev. E
71
,
065201
(
2005
).
53.
Y. L.
Maistrenko
,
O. V.
Popovych
, and
P. A.
Tass
, “
Chaotic attractor in the Kuramoto model
,”
Int. J. Bifurcat. Chaos
15
,
3457
3466
(
2005
).
You do not currently have access to this content.