This study investigates the dynamics of a modified Colpitts oscillator, exhibiting complex periodic and chaotic behaviors. Our research explores the dynamics and synchronization of coupled chaotic Colpitts oscillators, crucial for understanding their potential applications and behaviors. The main discovery is the emergence of a phase in which the systems achieve either complete synchronization or desynchronization. This behavior depends on the values of the coupling parameter. The subsequent challenge involves understanding how the coupling parameter influences the emergence of this synchronization phenomenon.

1.
E. H.
Colpitts
, “Oscillation generator,” U.S. patent 1,624,537 (12 April 1927).
2.
M. P.
Kennedy
, “
Chaos in the Colpitts oscillator
,”
IEEE Trans. Circuits Syst. I: Fundam. Theory Appl.
41
,
771
774
(
1994
).
3.
G. M.
Maggio
,
O.
De Feo
, and
M. P.
Kennedy
, “
Nonlinear analysis of the Colpitts oscillator and applications to design
,”
IEEE Trans. Circuits Syst. I: Fundam. Theory Appl.
46
,
1118
1130
(
1999
).
4.
A.
Uchida
,
M.
Kawano
, and
S.
Yoshimori
, “
Dual synchronization of chaos in Colpitts electronic oscillators and its applications for communications
,”
Phys. Rev. E
68
,
056207
(
2003
).
5.
S.
Qiao
,
Z.-G.
Shi
,
T.
Jiang
, and
L.-X.
Ran
, “
A new architecture of UWB radar utilizing microwave chaotic signals and chaos synchronization
,”
Prog. Electromagn. Res.
75
,
225
237
(
2007
).
6.
G.
Mykolaitis
,
A.
Tamasevicius
,
A.
Cenys
,
S.
Bumelien
,
A. N.
Anagnostopoulos
, and
N.
Kalkan
, “
Very high and ultrahigh frequency hyperchaotic oscillators with delay line
,”
Chaos, Solitons Fractals
17
,
343
347
(
2003
).
7.
L.
Guo-Hui
, “
Synchronization and anti-synchronization of Colpitts oscillators using active control
,”
Chaos, Solitons Fractals
26
,
87
93
(
2005
).
8.
J.
Effa
,
B.
Essimbi
, and
J. M.
Ngundam
, “
Synchronization of improved chaotic Colpitts oscillators using nonlinear feedback control
,”
Nonlinear Dyn.
58
,
39
(
2009
).
9.
R.
Bonetti
,
S.
De Souza
,
A.
Batista
,
J.
Szezech
, Jr.
,
I.
Caldas
,
R.
Viana
,
S.
Lopes
, and
M.
Baptista
, “
Super persistent transient in a master—slave configuration with Colpitts oscillators
,”
J. Phys. A: Math. Theor.
47
,
405101
(
2014
).
10.
A.
Tamaševičius
,
G.
Mykolaitis
,
S.
Bumelienė
,
A.
Čenys
,
A.
Anagnostopoulos
, and
E.
Lindberg
, “
Two-stage chaotic Colpitts oscillator
,”
Electron. Lett.
37
,
549
551
(
2001
).
11.
A.
Tamasevicius
,
S.
Bumeliene
, and
E.
Lindberg
, “
Improved chaotic Colpitts oscillator for ultrahigh frequencies
,”
Electron. Lett.
40
,
1569
1570
(
2004
).
12.
A.
Čenys
,
A.
Tamasevicius
,
A.
Baziliauskas
,
R.
Krivickas
, and
E.
Lindberg
, “
Hyperchaos in coupled Colpitts oscillators
,”
Chaos, Solitons Fractals
17
,
349
353
(
2003
).
13.
V.
Kamdoum Tamba
,
H.
Fotsin
,
J.
Kengne
,
E. B.
Megam Ngouonkadi
, and
P.
Talla
, “
Emergence of complex dynamical behaviors in improved Colpitts oscillators: Antimonotonicity, coexisting attractors, and metastable chaos
,”
Int. J. Dyn. Control
5
,
395
406
(
2017
).
14.
J.
Kengne
,
J.
Chedjou
,
G.
Kenne
, and
K.
Kyamakya
, “
Dynamical properties and chaos synchronization of improved Colpitts oscillators
,”
Commun. Nonlinear Sci. Numer. Simul.
17
,
2914
2923
(
2012
).
15.
M.
Kountchou
,
V. F.
Signing
,
R. T.
Mogue
,
J.
Kengne
,
P.
Louodop
et al., “
Complex dynamic behaviors in a new Colpitts oscillator topology based on a voltage comparator
,”
AEU-Int. J. Electron. Commun.
116
,
153072
(
2020
).
16.
J.
Zhang
,
Y.
Zhang
,
W.
Ali
et al., “Linearization modeling for non-smooth dynamical systems with approximated scalar sign function,” in 2011 50th IEEE Conference on Decision and Control and European Control Conference (IEEE, 2011), pp. 5205–5210.
17.
L. M.
Pecora
and
T. L.
Carroll
, “
Master stability functions for synchronized coupled systems
,”
Phys. Rev. Lett.
80
,
2109
(
1998
).
18.
L.
Huang
,
Q.
Chen
,
Y.-C.
Lai
, and
L. M.
Pecora
, “
Generic behavior of master-stability functions in coupled nonlinear dynamical systems
,”
Phys. Rev. E
80
,
036204
(
2009
).
You do not currently have access to this content.