Neuronal activity gives rise to behavior, and behavior influences neuronal dynamics, in a closed-loop control system. Is it possible then, to find a relationship between the statistical properties of behavior and neuronal dynamics? Measurements of neuronal activity and behavior have suggested a direct relationship between scale-free neuronal and behavioral dynamics. Yet, these studies captured only local dynamics in brain sub-networks. Here, we investigate the relationship between internal dynamics and output statistics in a mathematical model system where we have access to the dynamics of all network units. We train a recurrent neural network (RNN), initialized in a high-dimensional chaotic state, to sustain behavioral states for durations following a power-law distribution as observed experimentally. Changes in network connectivity due to training affect the internal dynamics of neuronal firings, leading to neuronal avalanche size distributions approximating power-laws over some ranges. Yet, randomizing the changes in network connectivity can leave these power-law features largely unaltered. Specifically, whereas neuronal avalanche duration distributions show some variations between RNNs with trained and randomized decoders, neuronal avalanche size distributions are invariant, in the total population and in output-correlated sub-populations. This is true independent of whether the randomized decoders preserve power-law distributed behavioral dynamics. This demonstrates that a one-to-one correspondence between the considered statistical features of behavior and neuronal dynamics cannot be established and their relationship is non-trivial. Our findings also indicate that statistical properties of the intrinsic dynamics may be preserved, even as the internal state responsible for generating the desired output dynamics is perturbed.

1.
H. J.
Jensen
,
Self-Organized Criticality: Emergent Complex Behavior in Physical and Biological Systems
(
Cambridge University Press
,
1998
), Vol. 10.
2.
K.
Christensen
and
N. R.
Moloney
,
Complexity and Criticality
(
World Scientific Publishing Company
,
2005
), Vol. 1.
3.
D.
Sornette
,
Critical Phenomena in Natural Sciences: Chaos, Fractals, Self-organization and Disorder: Concepts and Tools
(
Springer Science & Business Media
,
2006
).
4.
D. L.
Turcotte
, “
Self-organized criticality
,”
Rep. Prog. Phys.
62
,
1377
(
1999
).
5.
M. J.
Aschwanden
,
Self-Organized Criticality Systems
(
Open Academic Press
,
2013
).
6.
J. M.
Beggs
,
The Cortex and the Critical Point: Understanding the Power of Emergence
(
MIT Press
,
2022
).
7.
J. M.
Beggs
and
D.
Plenz
, “
Neuronal avalanches in neocortical circuits
,”
J. Neurosci.
23
,
11167
11177
(
2003
).
8.
L.
Cocchi
,
L. L.
Gollo
,
A.
Zalesky
, and
M.
Breakspear
, “
Criticality in the brain: A synthesis of neurobiology, models and cognition
,”
Prog. Neurobiol.
158
,
132
152
(
2017
).
9.
T.
Bellay
,
A.
Klaus
,
S.
Seshadri
, and
D.
Plenz
, “
Irregular spiking of pyramidal neurons organizes as scale-invariant neuronal avalanches in the awake state
,”
eLife
4
,
e07224
(
2015
).
10.
M.
Yaghoubi
,
T.
de Graaf
,
J. G.
Orlandi
,
F.
Girotto
,
M. A.
Colicos
, and
J.
Davidsen
, “
Neuronal avalanche dynamics indicates different universality classes in neuronal cultures
,”
Sci. Rep.
8
,
3417
(
2018
).
11.
D.
Curic
,
V. E.
Ivan
,
D. T.
Cuesta
,
I. M.
Esteves
,
M. H.
Mohajerani
,
A. J.
Gruber
, and
J.
Davidsen
, “
Deconstructing scale-free neuronal avalanches: Behavioral transitions and neuronal response
,”
J. Phys.: Complex.
2
,
045010
(
2021
).
12.
M.
Yaghoubi
,
J. G.
Orlandi
,
M. A.
Colicos
, and
J.
Davidsen
, “Criticality and universality in neuronal cultures during ‘up’ and ‘down’ states,” bioRxiv (2024).
13.
O.
Kinouchi
and
M.
Copelli
, “
Optimal dynamical range of excitable networks at criticality
,”
Nat. Phys.
2
,
348
351
(
2006
).
14.
W. L.
Shew
,
H.
Yang
,
T.
Petermann
,
R.
Roy
, and
D.
Plenz
, “
Neuronal avalanches imply maximum dynamic range in cortical networks at criticality
,”
J. Neurosci.
29
,
15595
15600
(
2009
).
15.
S. H.
Gautam
,
T. T.
Hoang
,
K.
McClanahan
,
S. K.
Grady
, and
W. L.
Shew
, “
Maximizing sensory dynamic range by tuning the cortical state to criticality
,”
PLoS Comput. Biol.
11
,
e1004576
(
2015
).
16.
A.-E.
Avramiea
,
A.
Masood
,
H. D.
Mansvelder
, and
K.
Linkenkaer-Hansen
, “
Long-range amplitude coupling is optimized for brain networks that function at criticality
,”
J. Neurosci.
42
,
2221
2233
(
2022
).
17.
K.
Linkenkaer-Hansen
,
V. V.
Nikouline
,
J. M.
Palva
, and
R. J.
Ilmoniemi
, “
Long-range temporal correlations and scaling behavior in human brain oscillations
,”
J. Neurosci.
21
,
1370
1377
(
2001
).
18.
F.
Lombardi
,
H. J.
Herrmann
,
D.
Plenz
, and
L.
De Arcangelis
, “
Temporal correlations in neuronal avalanche occurrence
,”
Sci. Rep.
6
,
24690
(
2016
).
19.
C.
Meisel
,
K.
Bailey
,
P.
Achermann
, and
D.
Plenz
, “
Decline of long-range temporal correlations in the human brain during sustained wakefulness
,”
Sci. Rep.
7
,
11825
(
2017
).
20.
M.
Jannesari
,
A.
Saeedi
,
M.
Zare
,
S.
Ortiz-Mantilla
,
D.
Plenz
, and
A. A.
Benasich
, “
Stability of neuronal avalanches and long-range temporal correlations during the first year of life in human infants
,”
Brain Struct. Funct.
225
,
1169
1183
(
2020
).
21.
C.
Anteneodo
and
D.
Chialvo
, “
Unraveling the fluctuations of animal motor activity
,”
Chaos
19
,
033123
(
2009
).
22.
A.
Proekt
,
J. R.
Banavar
,
A.
Maritan
, and
D. W.
Pfaff
, “
Scale invariance in the dynamics of spontaneous behavior
,”
Proc. Natl. Acad. Sci. U.S.A.
109
,
10564
10569
(
2012
).
23.
D. W.
Sims
,
E. J.
Southall
,
N. E.
Humphries
,
G. C.
Hays
,
C. J.
Bradshaw
,
J. W.
Pitchford
,
A.
James
,
M. Z.
Ahmed
,
A. S.
Brierley
,
M. A.
Hindell
, and
D.
Morritt
, “
Scaling laws of marine predator search behaviour
,”
Nature
451
,
1098
1102
(
2008
).
24.
O.
Miramontes
,
O.
DeSouza
,
L. R.
Paiva
,
A.
Marins
, and
S.
Orozco
, “
Lévy flights and self-similar exploratory behaviour of termite workers: Beyond model fitting
,”
PLoS One
9
,
e111183
(
2014
).
25.
A. M.
Edwards
,
R. A.
Phillips
,
N. W.
Watkins
,
M. P.
Freeman
,
E. J.
Murphy
,
V.
Afanasyev
,
S. V.
Buldyrev
,
M. G.
da Luz
,
E. P.
Raposo
,
H. E.
Stanley
, and
G. M.
Viswanathan
, “
Revisiting Lévy flight search patterns of wandering albatrosses, bumblebees and deer
,”
Nature
449
,
1044
1048
(
2007
).
26.
A. M.
Edwards
, “
Overturning conclusions of Lévy flight movement patterns by fishing boats and foraging animals
,”
Ecology
92
,
1247
1257
(
2011
).
27.
S. A.
Jones
,
J. H.
Barfield
,
V. K.
Norman
, and
W. L.
Shew
, “
Scale-free behavioral dynamics directly linked with scale-free cortical dynamics
,”
eLife
12
,
e79950
(
2023
).
28.
A.
Rabus
,
D.
Curic
,
V. E.
Ivan
,
I. M.
Esteves
,
A. J.
Gruber
, and
J.
Davidsen
, “
Changes in functional connectivity preserve scale-free neuronal and behavioral dynamics
,”
Phys. Rev. E
108
,
L052301
(
2023
).
29.
A.
Levina
,
V.
Priesemann
, and
J.
Zierenberg
, “
Tackling the subsampling problem to infer collective properties from limited data
,”
Nat. Rev. Phys.
4
,
770
784
(
2022
).
30.
H.
Sompolinsky
,
A.
Crisanti
, and
H.-J.
Sommers
, “
Chaos in random neural networks
,”
Phys. Rev. Lett.
61
,
259
(
1988
).
31.
D.
Sussillo
and
L. F.
Abbott
, “
Generating coherent patterns of activity from chaotic neural networks
,”
Neuron
63
,
544
557
(
2009
).
32.
W.
Nicola
and
C.
Clopath
, “
Supervised learning in spiking neural networks with force training
,”
Nat. Commun.
8
,
2208
(
2017
).
33.
M.
Masoliver
,
J.
Davidsen
, and
W.
Nicola
, “The hippocampal theta oscillation may be generated by chimera dynamics,” bioRxiv (2023).
34.
M.
Masoliver
,
J.
Davidsen
, and
W.
Nicola
, “
Embedded chimera states in recurrent neural networks
,”
Commun. Phys.
5
,
205
(
2022
).
35.
V. E.
Ivan
,
D. P.
Tomàs-Cuesta
,
I. M.
Esteves
,
D.
Curic
,
M.
Mohajerani
,
B. L.
McNaughton
,
J.
Davidsen
, and
A. J.
Gruber
, “
The nonclassic psychedelic ibogaine disrupts cognitive maps
,”
Biol. Psychiatry Glob. Open Sci.
4
,
275
283
(
2023
).
36.
If η η is set to zero in Eq. (2), the power-law distributed behavioral dynamics are lost.
37.
L. R.
Paiva
,
A.
Marins
,
P. F.
Cristaldo
,
D. M.
Ribeiro
,
S. G.
Alves
,
A. M.
Reynolds
,
O.
DeSouza
, and
O.
Miramontes
, “
Scale-free movement patterns in termites emerge from social interactions and preferential attachments
,”
Proc. Natl. Acad. Sci. U.S.A.
118
,
e2004369118
(
2021
).
38.
G. F.
Grosu
,
A. V.
Hopp
,
V. V.
Moca
,
H.
Bârzan
,
A.
Ciuparu
,
M.
Ercsey-Ravasz
,
M.
Winkel
,
H.
Linde
, and
R. C.
Mureşan
, “
The fractal brain: Scale-invariance in structure and dynamics
,”
Cereb. Cortex
33
,
4574
4605
(
2023
).
39.
R. C. A.
Hidalgo
, “
Conditions for the emergence of scaling in the inter-event time of uncorrelated and seasonal systems
,”
Phys. A: Stat. Mech. Appl.
369
,
877
883
(
2006
).
40.
G. A.
Miller
, “
Some effects of intermittent silence
,”
Am. J. Psychol.
70
,
311
314
(
1957
).
41.
I.
Eliazar
and
J.
Klafter
, “
A unified and universal explanation for Lévy laws and 1/f noises
,”
Proc. Natl. Acad. Sci. U.S.A.
106
,
12251
12254
(
2009
).
42.
B.
Del Papa
,
V.
Priesemann
, and
J.
Triesch
, “
Criticality meets learning: Criticality signatures in a self-organizing recurrent neural network
,”
PLoS One
12
,
e0178683
(
2017
).
43.
B.
Del Papa
,
V.
Priesemann
, and
J.
Triesch
, ”The functional role of critical dynamics in neural systems,” in Fading Memory, Plasticity, and Criticality in Recurrent Networks (Springer, 2019), pp. 95–115.
44.
B.
Cramer
,
D.
Stöckel
,
M.
Kreft
,
M.
Wibral
,
J.
Schemmel
,
K.
Meier
, and
V.
Priesemann
, “
Control of criticality and computation in spiking neuromorphic networks with plasticity
,”
Nat. Commun.
11
,
2853
(
2020
).
45.
A. M.
Schäfer
and
H.-G.
Zimmermann
, “
Recurrent neural networks are universal approximators
,”
Int. J. Neural Syst.
17
,
253
263
(
2007
).
You do not currently have access to this content.